欢迎光临散文网 会员登陆 & 注册

量子场论(六):实标量场的粒子态

2022-11-12 18:54 作者:我的世界-华汁  | 我要投稿


对于动量%5Cmathbf%20p对应的湮灭算符a_%5Cmathbf%20p,假设真空态%7C0%5Crangle%0A满足:

a_%5Cmathbf%20p%7C0%5Crangle%3D0.%5Ctag%7B6.1%7D

归一化为:

%5Clangle0%7C0%5Crangle%3D1.%5Ctag%7B6.2%7D

把哈密顿算符作用到真空态上,得到:

%5Chat%20H%7C0%5Crangle%3DE_%7B%5Cmathrm%7Bvac%7D%7D%7C0%5Crangle%5C%20%2C%5C%20E_%7B%5Cmathrm%7Bvac%7D%7D%3D%5Cdelta%5E%7B(3)%7D(%5Cmathbf%200)%5Cint%5Cfrac%7BE_%5Cmathbf%20p%7D2%5Cmathrm%20d%5E3p.%5Ctag%7B6.3%7D

可见,真空态的能量本征值是零点能E_%7B%5Cmathrm%7Bvac%7D%7D.真空态是能量最低的态。把动量算符作用在真空态上:

%5Chat%7B%5Cmathbf%20p%7D%7C0%5Crangle%3D%5Cmathbf%200%7C0%5Crangle.%5Ctag%7B6.4%7D

因此真空态不具有动量。

定义动量为%5Cmathbf%20p的单粒子态为:

%7C%5Cmathbf%20p%5Crangle%3D%5Csqrt%7B2E_%5Cmathbf%20p%7Da_%5Cmathbf%20p%5E%5Cdagger%7C0%5Crangle.%5Ctag%7B6.5%7D

%5Csqrt%7B2E_%5Cmathbf%20p%7D是归一化因子。用哈密顿算符作用得到:

%5Chat%20H%7C%5Cmathbf%20p%5Crangle%3D(E_%7B%5Cmathrm%7Bvac%7D%7D%2BE_%5Cmathbf%20p)%7C%5Cmathbf%20p%5Crangle.%5Ctag%7B6.6%7D

用动量算符作用得到:

%5Chat%7B%5Cmathbf%20p%7D%7C%5Cmathbf%20p%5Crangle%3D%5Csqrt%7B2E_%5Cmathbf%20p%7D%5Chat%7B%5Cmathbf%20p%7Da_%5Cmathbf%20p%5E%5Cdagger%7C0%5Crangle%3D%5Csqrt%7B2E_%5Cmathbf%20p%7D(%5Cmathbf%200%2B%5Cmathbf%20p)a_%5Cmathbf%20p%5E%5Cdagger%7C0%5Crangle%3D%5Cmathbf%20p%7C%5Cmathbf%20p%5Crangle.%5Ctag%7B6.7%7D

可见,相比于真空态,单粒子态%7C%5Cmathbf%20p%5Crangle增加了能量E_%5Cmathbf%20p与动量%5Cmathbf%20p,两者满足质壳条件,因此,该单粒子态描述一个动量为%5Cmathbf%20p的粒子,实标量场的质量m即为该粒子的质量。

把湮灭算符作用在上面得到:

a_%5Cmathbf%20p%7C%5Cmathbf%20q%5Crangle%3D%5Csqrt%7B2E_%5Cmathbf%20q%7Da_%5Cmathbf%20pa_%5Cmathbf%20q%5E%5Cdagger%7C0%5Crangle%3D%5Csqrt%7B2E_%5Cmathbf%20q%7D%5Ba_%5Cmathbf%20q%5E%5Cdagger%20a_%5Cmathbf%20p%2B(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20q)%5D%7C0%5Crangle%3D%5Csqrt%7B2E_%5Cmathbf%20q%7D(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20q)%7C0%5Crangle.%5Ctag%7B6.8%7D

%5Cmathbf%20p%5Cne%5Cmathbf%20q时,没有可以让湮灭算符去湮灭的粒子,结果为零。当%5Cmathbf%20p%3D%5Cmathbf%20q时,作用得到真空态。可见,湮灭算符a_%5Cmathbf%20p的作用是湮灭掉(减少)一个动量为%5Cmathbf%20p的粒子。

两个单粒子态的内积为:

%5Clangle%5Cmathbf%20q%7C%5Cmathbf%20p%5Crangle%3D%5Csqrt%7B4E_%5Cmathbf%20qE_%5Cmathbf%20p%7D%5Clangle0%7Ca_%5Cmathbf%20qa_%5Cmathbf%20p%5E%5Cdagger%7C0%5Crangle%3D%5Csqrt%7B4E_%5Cmathbf%20qE_%5Cmathbf%20p%7D%5Clangle0%7C%5Ba_%5Cmathbf%20p%5E%5Cdagger%20a_%5Cmathbf%20q%2B(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20q)%5D%7C0%5Crangle%3D%5Csqrt%7B4E_%5Cmathbf%20qE_%5Cmathbf%20p%7D(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20q)%5Clangle0%7C0%5Crangle%3D2E_%5Cmathbf%20p(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20q).%5Ctag%7B6.9%7D

这是个洛伦兹不变量。

之前提到过,标量场是算符,把标量场算符作用在真空态上得到:

%5Cphi(x)%7C0%5Crangle%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%5Csqrt%7B2E_%5Cmathbf%20p%7D%7D(a_%5Cmathbf%20pe%5E%7B-ip%5Ccdot%20x%7D%2Ba_%5Cmathbf%20p%5E%5Cdagger%20e%5E%7Bip%5Ccdot%20x%7D)%7C0%5Crangle%5Cmathrm%20d%5E3p%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%5Csqrt%7B2E_%5Cmathbf%20p%7D%7De%5E%7Bip%5Ccdot%20x%7Da_%5Cmathbf%20p%5E%5Cdagger%20%7C0%5Crangle%5Cmathrm%20d%5E3p.%5Ctag%7B6.10%7D

它与单粒子态%7C%5Cmathbf%20p%5Crangle的内积为:

%5Clangle%5Cmathbf%20p%7C%5Cphi(x)%7C0%5Crangle%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7D%5Csqrt%7B%5Cfrac%7BE_%5Cmathbf%20p%7D%7BE_%5Cmathbf%20q%7D%7De%5E%7Bip%5Ccdot%20x%7D%5Clangle0%7Ca_%5Cmathbf%20pa_%5Cmathbf%20q%5E%5Cdagger%20%7C0%5Crangle%5Cmathrm%20d%5E3q%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7D%5Csqrt%7B%5Cfrac%7BE_%5Cmathbf%20p%7D%7BE_%5Cmathbf%20q%7D%7De%5E%7Bip%5Ccdot%20x%7D%5Clangle0%7C%5Ba_%5Cmathbf%20p%2Ca_%5Cmathbf%20q%5E%5Cdagger%20%5D%7C0%5Crangle%5Cmathrm%20d%5E3q%3D%5Cint%5Csqrt%7B%5Cfrac%7BE_%5Cmathbf%20p%7D%7BE_%5Cmathbf%20q%7D%7D%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20q)e%5E%7Bip%5Ccdot%20x%7D%5Clangle0%7C%7C0%5Crangle%5Cmathrm%20d%5E3q%3De%5E%7Bip%5Ccdot%20x%7D.%5Ctag%7B6.11%7D

回顾量子力学,动量本征态%7C%5Cmathbf%20p%5Crangle与坐标本征态%7C%5Cmathbf%20x%5Crangle的内积为:

%5Clangle%5Cmathbf%20p%7C%5Cmathbf%20x%5Crangle%3D%5Cfrac1%7B%5Csqrt%7B(2%5Cpi)%5E3%7D%7De%5E%7Bi%5Cmathbf%20p%5Ccdot%5Cmathbf%20x%7D.%5Ctag%7B6.12%7D

这两个内积的形式类似。因此%5Cphi(x)%7C0%5Crangle可视为单粒子位置本征态,场算符%5Cphi(%5Cmathbf%20x%2Ct)的作用是在(%5Cmathbf%20x%2Ct)这个时空点处产生一个粒子。

定义动量分别为%5Cmathbf%20p_1%2C%5Cmathbf%20p_2%2C%E2%80%A6%2C%5Cmathbf%20p_nn个粒子的多粒子态为:

%7C%5Cmathbf%20p_1%2C%5Cmathbf%20p_2%2C%E2%80%A6%2C%5Cmathbf%20p_n%5Crangle%5Cequiv%20C_1a_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger%20a_%7B%5Cmathbf%20p_2%7D%5E%5Cdagger%E2%80%A6a_%7B%5Cmathbf%20p_n%7D%5E%5Cdagger%7C0%5Crangle%5C%20%2C%5C%20C_1%3D%5Csqrt%7B2E_%7B%5Cmathbf%20p_1%7D%7D%5Csqrt%7B2E_%7B%5Cmathbf%20p_2%7D%7D%E2%80%A6%5Csqrt%7B2E_%7B%5Cmathbf%20p_n%7D%7D.%5Ctag%7B6.13%7D

将哈密顿算符作用于其上,得到:

%5Cbegin%7Balign%7D%5Chat%20H%7C%5Cmathbf%20p_1%2C%5Cmathbf%20p_2%2C%E2%80%A6%2C%5Cmathbf%20p_n%5Crangle%26%3DC_1%5Chat%20Ha_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger%20a_%7B%5Cmathbf%20p_2%7D%5E%5Cdagger%E2%80%A6a_%7B%5Cmathbf%20p_n%7D%5E%5Cdagger%7C0%5Crangle%3DC_1(a_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger%5Chat%20H%2BE_%7B%5Cmathbf%20p_1%7Da_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger)a_%7B%5Cmathbf%20p_2%7D%5E%5Cdagger%E2%80%A6a_%7B%5Cmathbf%20p_n%7D%5E%5Cdagger%7C0%5Crangle%5C%5C%26%3DC_1a_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger%20%5Chat%20Ha_%7B%5Cmathbf%20p_2%7D%5E%5Cdagger%E2%80%A6a_%7B%5Cmathbf%20p_n%7D%5E%5Cdagger%7C0%5Crangle%2BE_%7B%5Cmathbf%20p_1%7D%7C%5Cmathbf%20p_1%2C%5Cmathbf%20p_2%2C%E2%80%A6%2C%5Cmathbf%20p_n%5Crangle%5C%5C%26%3DC_1a_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger%20a_%7B%5Cmathbf%20p_2%7D%5E%5Cdagger%5Chat%20H%E2%80%A6a_%7B%5Cmathbf%20p_n%7D%5E%5Cdagger%7C0%5Crangle%2B(E_%7B%5Cmathbf%20p_1%7D%2BE_%7B%5Cmathbf%20p_2%7D)%7C%5Cmathbf%20p_1%2C%5Cmathbf%20p_2%2C%E2%80%A6%2C%5Cmathbf%20p_n%5Crangle%5C%5C%26%3D%E2%80%A6%3DC_1a_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger%20a_%7B%5Cmathbf%20p_2%7D%5E%5Cdagger%E2%80%A6a_%7B%5Cmathbf%20p_n%7D%5E%5Cdagger%5Chat%20H%7C0%5Crangle%2B(E_%7B%5Cmathbf%20p_1%7D%2BE_%7B%5Cmathbf%20p_2%7D%2B%E2%80%A6%2BE_%7B%5Cmathbf%20p_n%7D)%7C%5Cmathbf%20p_1%2C%5Cmathbf%20p_2%2C%E2%80%A6%2C%5Cmathbf%20p_n%5Crangle%5C%5C%26%3D(E_%7B%5Cmathrm%7Bvac%7D%7D%2BE_%7B%5Cmathbf%20p_1%7D%2BE_%7B%5Cmathbf%20p_2%7D%2B%E2%80%A6%2BE_%7B%5Cmathbf%20p_n%7D)%7C%5Cmathbf%20p_1%2C%5Cmathbf%20p_2%2C%E2%80%A6%2C%5Cmathbf%20p_n%5Crangle.%5Cend%7Balign%7D%5Ctag%7B6.14%7D

同理,动量算符作用给出:

%5Chat%7B%5Cmathbf%20p%7D%7C%5Cmathbf%20p_1%2C%5Cmathbf%20p_2%2C%E2%80%A6%2C%5Cmathbf%20p_n%5Crangle%3D(%5Cmathbf%20p_1%2B%5Cmathbf%20p_2%2B%E2%80%A6%2B%5Cmathbf%20p_n)%7C%5Cmathbf%20p_1%2C%5Cmathbf%20p_2%2C%E2%80%A6%2C%5Cmathbf%20p_n%5Crangle.%5Ctag%7B6.15%7D

多粒子态的能量动量本征值由各粒子叠加贡献。

由于产生算符相互对易,因此可以得到:

%5Cbegin%7Balign%7D%7C%5Cmathbf%20p_1%2C%E2%80%A6%2C%5Cmathbf%20p_i%2C%E2%80%A6%2C%5Cmathbf%20p_j%2C%E2%80%A6%2C%5Cmathbf%20p_n%5Crangle%26%3D%5Csqrt%7B2E_%7B%5Cmathbf%20p_1%7D%7D%E2%80%A6%5Csqrt%7B2E_%7B%5Cmathbf%20p_n%7D%7Da_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger%E2%80%A6a_%7B%5Cmathbf%20p_i%7D%5E%5Cdagger%E2%80%A6a_%7B%5Cmathbf%20p_j%7D%5E%5Cdagger%E2%80%A6a_%7B%5Cmathbf%20p_n%7D%5E%5Cdagger%7C0%5Crangle%5C%5C%26%3D%5Csqrt%7B2E_%7B%5Cmathbf%20p_1%7D%7D%E2%80%A6%5Csqrt%7B2E_%7B%5Cmathbf%20p_n%7D%7Da_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger%E2%80%A6a_%7B%5Cmathbf%20p_j%7D%5E%5Cdagger%E2%80%A6a_%7B%5Cmathbf%20p_i%7D%5E%5Cdagger%E2%80%A6a_%7B%5Cmathbf%20p_n%7D%5E%5Cdagger%7C0%5Crangle%5C%5C%26%3D%7C%5Cmathbf%20p_1%2C%E2%80%A6%2C%5Cmathbf%20p_j%2C%E2%80%A6%2C%5Cmathbf%20p_i%2C%E2%80%A6%2C%5Cmathbf%20p_n%5Crangle.%5Cend%7Balign%7D%5Ctag%7B6.16%7D

对调多粒子态的任意两个粒子,得到的态相同,说明实标量场描述的粒子是玻色子,称为标量玻色子,遵循玻色-爱因斯坦统计。

双粒子态的内积为:

%5Cbegin%7Balign%7D%5Clangle%5Cmathbf%20q_1%2C%5Cmathbf%20q_2%7C%5Cmathbf%20p_1%2C%5Cmathbf%20p_2%5Crangle%26%3D%5Csqrt%7B16E_%7B%5Cmathbf%20p_1%7DE_%7B%5Cmathbf%20p_2%7DE_%7B%5Cmathbf%20q_1%7DE_%7B%5Cmathbf%20q_2%7D%7D%5Clangle0%7Ca_%7B%5Cmathbf%20q_2%7Da_%7B%5Cmathbf%20q_1%7Da_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger%20a_%7B%5Cmathbf%20p_2%7D%5E%5Cdagger%7C0%5Crangle%5C%5C%26%3D%5Csqrt%7B16E_%7B%5Cmathbf%20p_1%7DE_%7B%5Cmathbf%20p_2%7DE_%7B%5Cmathbf%20q_1%7DE_%7B%5Cmathbf%20q_2%7D%7D%5B(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p_1-%5Cmathbf%20q_1)%5Clangle0%7Ca_%7B%5Cmathbf%20q_2%7Da_%7B%5Cmathbf%20p_2%7D%5E%5Cdagger%7C0%5Crangle%2B%5Clangle0%7Ca_%7B%5Cmathbf%20q_2%7Da_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger%20a_%7B%5Cmathbf%20q_1%7Da_%7B%5Cmathbf%20p_2%7D%5E%5Cdagger%7C0%5Crangle%5D%5C%5C%26%3D%5Csqrt%7B16E_%7B%5Cmathbf%20p_1%7DE_%7B%5Cmathbf%20p_2%7DE_%7B%5Cmathbf%20q_1%7DE_%7B%5Cmathbf%20q_2%7D%7D%5B(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p_1-%5Cmathbf%20q_1)%5Clangle0%7Ca_%7B%5Cmathbf%20q_2%7Da_%7B%5Cmathbf%20p_2%7D%5E%5Cdagger%7C0%5Crangle%2B(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p_2-%5Cmathbf%20q_1)%5Clangle0%7Ca_%7B%5Cmathbf%20q_2%7Da_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger%20%7C0%5Crangle%5D%5C%5C%26%3D%5Csqrt%7B16E_%7B%5Cmathbf%20p_1%7DE_%7B%5Cmathbf%20p_2%7DE_%7B%5Cmathbf%20q_1%7DE_%7B%5Cmathbf%20q_2%7D%7D%5B(2%5Cpi)%5E6%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p_1-%5Cmathbf%20q_1)%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p_2-%5Cmathbf%20q_2)%2B(2%5Cpi)%5E6%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p_2-%5Cmathbf%20q_1)%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p_1-%5Cmathbf%20q_2)%5D%5C%5C%26%3D4E_%7B%5Cmathbf%20p_1%7DE_%7B%5Cmathbf%20p_2%7D(2%5Cpi)%5E6%5B%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p_1-%5Cmathbf%20q_1)%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p_2-%5Cmathbf%20q_2)%2B%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p_2-%5Cmathbf%20q_1)%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p_1-%5Cmathbf%20q_2)%5D.%5Cend%7Balign%7D%5Ctag%7B6.17%7D

定义动量均为%5Cmathbf%20qn个粒子的多粒子态:

%7Cn_%5Cmathbf%20q%5Crangle%5Cequiv%20C_2(a_%5Cmathbf%20q%5E%5Cdagger)%5E%7Bn_%5Cmathbf%20q%7D%7C0%5Crangle%5C%20%2C%5C%20C_2%3D(2E_%5Cmathbf%20q)%5E%7B%5Cfrac%7Bn_%5Cmathbf%20q%7D%7B2%7D%7D.%5Ctag%7B6.18%7D

则粒子数密度算符%5Chat%20N_%7B%5Cmathbf%20p%7D%3Da_%5Cmathbf%20p%5E%5Cdagger%20a_%5Cmathbf%20p对它的作用为:

%5Cbegin%7Balign%7D%5Chat%20N_%7B%5Cmathbf%20p%7D%7Cn_%5Cmathbf%20q%5Crangle%26%3DC_2a_%5Cmathbf%20p%5E%5Cdagger%20a_%5Cmathbf%20p(a_%5Cmathbf%20q%5E%5Cdagger)%5E%7Bn_%5Cmathbf%20q%7D%7C0%5Crangle%3DC_2a_%5Cmathbf%20p%5E%5Cdagger%5Ba_%5Cmathbf%20q%5E%5Cdagger%20a_%5Cmathbf%20p%2B(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20q)%5D(a_%5Cmathbf%20q%5E%5Cdagger)%5E%7Bn_%5Cmathbf%20q-1%7D%7C0%5Crangle%5C%5C%26%3DC_2a_%5Cmathbf%20p%5E%5Cdagger%20a_%5Cmathbf%20q%5E%5Cdagger%20a_%5Cmathbf%20p(a_%5Cmathbf%20q%5E%5Cdagger)%5E%7Bn_%5Cmathbf%20q-1%7D%7C0%5Crangle%2B(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20q)C_2a_%5Cmathbf%20p%5E%5Cdagger(a_%5Cmathbf%20q%5E%5Cdagger)%5E%7Bn_%5Cmathbf%20q-1%7D%7C0%5Crangle%5C%5C%26%3DC_2a_%5Cmathbf%20p%5E%5Cdagger%20(a_%5Cmathbf%20q%5E%5Cdagger%20)%5E2a_%5Cmathbf%20p(a_%5Cmathbf%20q%5E%5Cdagger)%5E%7Bn_%5Cmathbf%20q-2%7D%7C0%5Crangle%2B2(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20q)C_2a_%5Cmathbf%20p%5E%5Cdagger(a_%5Cmathbf%20q%5E%5Cdagger)%5E%7Bn_%5Cmathbf%20q-1%7D%7C0%5Crangle%5C%5C%26%3D%E2%80%A6%3DC_2a_%5Cmathbf%20p%5E%5Cdagger%20(a_%5Cmathbf%20q%5E%5Cdagger)%5E%7Bn_%5Cmathbf%20q%7Da_%5Cmathbf%20p%7C0%5Crangle%2Bn_%5Cmathbf%20q(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20q)C_2a_%5Cmathbf%20p%5E%5Cdagger(a_%5Cmathbf%20q%5E%5Cdagger)%5E%7Bn_%5Cmathbf%20q-1%7D%7C0%5Crangle%5C%5C%26%3Dn_%5Cmathbf%20q(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20q)C_2a_%5Cmathbf%20p%5E%5Cdagger(a_%5Cmathbf%20q%5E%5Cdagger)%5E%7Bn_%5Cmathbf%20q-1%7D%7C0%5Crangle.%5Cend%7Balign%7D%5Ctag%7B6.19%7D

在动量空间对粒子数密度算符进行积分,可得到粒子数算符:

%5Chat%20N%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7Da_%5Cmathbf%20p%5E%5Cdagger%20a_%5Cmathbf%20p%5Cmathrm%20d%5E3p.%5Ctag%7B6.20%7D

把它作用在动量均为%5Cmathbf%20qn个粒子的多粒子态上,得到:

%5Chat%20N%7Cn_%5Cmathbf%20q%5Crangle%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7D%5Chat%20N_%7B%5Cmathbf%20p%7D%7Cn_%5Cmathbf%20q%5Crangle%5Cmathrm%20d%5E3p%3D%5Cint%20n_%5Cmathbf%20q%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20q)C_2a_%5Cmathbf%20p%5E%5Cdagger(a_%5Cmathbf%20q%5E%5Cdagger)%5E%7Bn_%5Cmathbf%20q-1%7D%7C0%5Crangle%5Cmathrm%20d%5E3p%3Dn_%5Cmathbf%20qC_2(a_%5Cmathbf%20q%5E%5Cdagger)%5E%7Bn_%5Cmathbf%20q%7D%7C0%5Crangle%3Dn_%5Cmathbf%20q%7Cn_%5Cmathbf%20q%5Crangle.%5Ctag%7B6.21%7D

因此,%7Cn_%5Cmathbf%20q%5Crangle是粒子数算符的本征态,本征值为粒子数n_%5Cmathbf%20q.

更一般地,定义动量为%5Cmathbf%20p_1%2C%5Cmathbf%20p_2%2C%E2%80%A6%2C%5Cmathbf%20p_m的粒子分别有n_%7B%5Cmathbf%20p_1%7D%2Cn_%7B%5Cmathbf%20p_2%7D%2C%E2%80%A6%2Cn_%7B%5Cmathbf%20p_m%7D个的多粒子态为:

%7Cn_%7B%5Cmathbf%20p_1%7D%2Cn_%7B%5Cmathbf%20p_2%7D%2C%E2%80%A6%2Cn_%7B%5Cmathbf%20p_m%7D%5Crangle%5Cequiv%20C_3(a_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_1%7D%7D(a_%7B%5Cmathbf%20p_2%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_2%7D%7D%E2%80%A6(a_%7B%5Cmathbf%20p_m%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_m%7D%7D%7C0%5Crangle%5C%20%2C%5C%20C_3%3D%5Cprod%5Em_%7Bi%3D1%7D(2E_%7B%5Cmathbf%20p_i%7D)%5E%7B%5Cfrac%7Bn_%7B%5Cmathbf%20p_i%7D%7D%7B2%7D%7D.%5Ctag%7B6.22%7D

用粒子数算符作用于其上,得到:

%5Cbegin%7Balign%7D%5Chat%20N%7Cn_%7B%5Cmathbf%20p_1%7D%2Cn_%7B%5Cmathbf%20p_2%7D%2C%E2%80%A6%2Cn_%7B%5Cmathbf%20p_m%7D%5Crangle%26%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7DC_3a_%5Cmathbf%20p%5E%5Cdagger%20a_%5Cmathbf%20p(a_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_1%7D%7D(a_%7B%5Cmathbf%20p_2%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_2%7D%7D%E2%80%A6(a_%7B%5Cmathbf%20p_m%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_m%7D%7D%7C0%5Crangle%5Cmathrm%20d%5E3p%5C%5C%26%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7DC_3%5Ba_%5Cmathbf%20p%5E%5Cdagger%20(a_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_1%7D%7Da_%5Cmathbf%20p(a_%7B%5Cmathbf%20p_2%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_2%7D%7D%E2%80%A6(a_%7B%5Cmathbf%20p_m%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_m%7D%7D%7C0%5Crangle%2Bn_%7B%5Cmathbf%20p_1%7D(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20p_1)a_%5Cmathbf%20p%5E%5Cdagger(a_%7B%5Cmathbf%20p_1%7D)%5E%7Bn_%7B%5Cmathbf%20p_1%7D-1%7D(a_%7B%5Cmathbf%20p_2%7D)%5E%7Bn_%7B%5Cmathbf%20p_2%7D%7D%E2%80%A6(a_%7B%5Cmathbf%20p_m%7D)%5E%7Bn_%7B%5Cmathbf%20p_m%7D%7D%7C0%5Crangle%5D%5Cmathrm%20d%5E3p%5C%5C%26%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7DC_3%5Ba_%5Cmathbf%20p%5E%5Cdagger%20(a_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_1%7D%7Da_%5Cmathbf%20p(a_%7B%5Cmathbf%20p_2%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_2%7D%7D%E2%80%A6(a_%7B%5Cmathbf%20p_m%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_m%7D%7D%7C0%5Crangle%5D%5Cmathrm%20d%5E3p%2Bn_%7B%5Cmathbf%20p_1%7D%7Cn_%7B%5Cmathbf%20p_1%7D%2Cn_%7B%5Cmathbf%20p_2%7D%2C%E2%80%A6%2Cn_%7B%5Cmathbf%20p_m%7D%5Crangle%5C%5C%26%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7DC_3%5Ba_%5Cmathbf%20p%5E%5Cdagger%20(a_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_1%7D%7D(a_%7B%5Cmathbf%20p_2%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_2%7D%7Da_%5Cmathbf%20p%E2%80%A6(a_%7B%5Cmathbf%20p_m%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_m%7D%7D%7C0%5Crangle%5D%5Cmathrm%20d%5E3p%2B(n_%7B%5Cmathbf%20p_1%7D%2Bn_%7B%5Cmathbf%20p_2%7D)%7Cn_%7B%5Cmathbf%20p_1%7D%2Cn_%7B%5Cmathbf%20p_2%7D%2C%E2%80%A6%2Cn_%7B%5Cmathbf%20p_m%7D%5Crangle%5C%5C%26%3D%E2%80%A6%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7DC_3%5Ba_%5Cmathbf%20p%5E%5Cdagger%20(a_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_1%7D%7D(a_%7B%5Cmathbf%20p_2%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_2%7D%7D%E2%80%A6(a_%7B%5Cmathbf%20p_m%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_m%7D%7Da_%5Cmathbf%20p%7C0%5Crangle%5D%5Cmathrm%20d%5E3p%2B(n_%7B%5Cmathbf%20p_1%7D%2Bn_%7B%5Cmathbf%20p_2%7D%2B%E2%80%A6%2Bn_%7B%5Cmathbf%20p_m%7D)%7Cn_%7B%5Cmathbf%20p_1%7D%2Cn_%7B%5Cmathbf%20p_2%7D%2C%E2%80%A6%2Cn_%7B%5Cmathbf%20p_m%7D%5Crangle%5C%5C%26%3D(n_%7B%5Cmathbf%20p_1%7D%2Bn_%7B%5Cmathbf%20p_2%7D%2B%E2%80%A6%2Bn_%7B%5Cmathbf%20p_m%7D)%7Cn_%7B%5Cmathbf%20p_1%7D%2Cn_%7B%5Cmathbf%20p_2%7D%2C%E2%80%A6%2Cn_%7B%5Cmathbf%20p_m%7D%5Crangle.%5Cend%7Balign%7D%5Ctag%7B6.23%7D

可见,粒子数算符确实可以描述粒子总数。

量子场论(六):实标量场的粒子态的评论 (共 条)

分享到微博请遵守国家法律