欢迎光临散文网 会员登陆 & 注册

留数定理||数理方法

2021-01-30 21:56 作者:湮灭的末影狐  | 我要投稿

//由于电脑崩了一次,AdobeIllustrator打不开,然后在家连不了校园网,软件没有装回来,这次示意图就比较随意

//感觉光抄书也没意思,这次整个活

//开始

1. 留数定理

考虑一个仅包围一个孤立奇点z_0的回路l,我们已经知道复变函数f(z)可以在奇点附近展开为洛朗级数:

f(z)%3D%5Csum_%7Bk%3D-%5Cinfty%7D%5E%5Cinfty%20a_k(z-z_0)%5Ek

并且在第三章我们提到过该级数可以沿l逐项积分,即

%5Coint_l%20f(z)%20%5Cmathrm%20d%20z%3D%5Csum_%7Bk%3D-%5Cinfty%7D%5E%5Cinfty%20a_k%5Coint_l(z-z_0)%5Ek%20%5Cmathrm%20d%20z

前面已经证明,

%5Cfrac%7B1%7D%7B2%20%5Cpi%20i%7D%20%5Coint_%7Bl%7D%20%5Cfrac%7B%5Cmathrm%7Bd%7D%20z%7D%7Bz-%5Calpha%7D%3D%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D%0A0%2C%5Cleft(l%20%5Coperatorname%7Bdoesn%E2%80%99t%7D%5Ctext%20%7B%20include%20%7D%20%5Calpha%5Cright)%20%5C%5C%0A1%2C(l%20%5Ctext%20%7B%20include%20%7D%20%5Calpha)%0A%5Cend%7Barray%7D%5Cright.%20

%5Cfrac%7B1%7D%7B2%20%5Cpi%20i%7D%20%5Coint_%7Bl%7D(z-%5Calpha)%5E%7Bn%7D%20%5Cmathrm%7Bd%7D%20z%3D0%20%5Cquad(n%20%5Cneq-1)%0A

所以有

%5Coint_l%20f(z)%5Cmathrm%20d%20z%3D%202%5Cpi%5Cmathrm%20i%20a_%7B-1%7D

因此洛朗级数的系数a_%7B-1%7D有特殊地位,称为函数f(z)z_0的留数(或残数)。通常记作:

%5Coint_l%20f(z)%5Cmathrm%20d%20z%3D%202%5Cpi%5Cmathrm%20i%20%5C%2C%7B%5Crm%20Res%7Df(z_0)

而如果积分回路包含数个孤立奇点,则可以构造复连通区域如图,

挖去奇点的复通区域

再根据复连通区域的柯西公式,可知

%5Coint_l%20f(z)%5Cmathrm%20d%20z%3D%5Csum_%7Bk%3D1%7D%5En%5Coint_%7Bl_k%7Df(z)%5Cmathrm%20d%20z%20%3D%202%5Cpi%5Cmathrm%20i%20%5C%2C%5Csum_%7Bk%3D1%7D%5En%7B%5Crm%20Res%7Df(z_k)

也就是说,要求回路积分值,只需求回路包含的所有奇点的留数之和。

如果要推广到无限远点:

f(z)在无限远点的邻域解析,展开成洛朗级数:

f(z)%3D%5Csum_%7Bk%3D-%5Cinfty%7D%5E%5Cinfty%20a_k%20z%5Ek

(事实上只需换元z'%3D1%2Fz即可知无限远点的洛朗级数和z%3D0点的洛朗级数是一样的)

取足够大的回路l使回路外函数不存在有限远奇点。级数沿该回路逐项积分得

%5Coint_l%20f(z)%5Cmathrm%20d%20z%3D%5Coint_l%20%5Csum_%7Bk%3D-%5Cinfty%7D%5E%5Cinfty%20a_k%20z%5Ek%20%5Cmathrm%20d%20z%3D-2%5Cpi%5Cmathrm%20i%20%5C%2C%20a_%7B-1%7D%3D%7B%5Crm%20Res%7D%5C%2Cf(%5Cinfty)

注意这里的积分仍取第二章定义的正方向,这里函数在回路外部解析,积分沿顺时针。

2. 留数的求法

除了通过洛朗级数的定义求留数,还可以利用以下方法:

设有函数的m阶极点z_0,则极点附近有洛朗级数

%20f(z%20)%3D%5Csum_%7Bk%3D-m%7D%5E%5Cinfty%20a_k(z-z_0)%5Ek%20

(z-z_0)%5Em%20f(z)%3D%5Csum_%7Bk%3D-m%7D%5E%5Cinfty%20a_k(z-z_0)%5E%7Bk%2Bm%7D%20%5C%5C%0A%3Da_%7B-m%7D%2Ba_%7B-m%2B1%7D(z-z_0)%2B...%2Ba_%7B-1%7D(z-z_0)%5E%7Bm-1%7D%2B...

g(z)%3D%5Cleft%5C%7B%20%20%5Cbegin%7Barray%7D%7Bc%7D%0A(z-z_0)%5Em%20f(z)%2C%5C%3Bz%5Cneq%20z_0%5C%5C%0Aa_%7B-m%7D%2C%5C%3Bz%3Dz_0%0A%5Cend%7Barray%7D%20%20%5Cright.

则上式右边是g(z)的泰勒级数,显然有

a_%7B-1%7D%3D%5Cfrac1%7B(m-1)!%7D%5Cfrac%7B%5Cmathrm%20d%5E%7Bm-1%7D%7D%7B%5Cmathrm%20dz%5E%7Bm-1%7D%7D%5Bf(z)(z-z_0)%5Em%5D

所以,如果可以找到m使%5Clim_%7Bz%5Crightarrow%20z_0%7D(z-z_0)%5Emf(z)%3DC%5Cneq0,则可以确定z_0m阶极点,并可以根据上式求得留数。特别地,对于单极点,

a_%7B-1%7D%3D%5Clim_%7Bz%5Crightarrow%20z_0%7D(z-z_0)f(z)

3. 留数的应用:定积分

3.1 三角函数有理式:

%5Cint_0%5E%7B2%5Cpi%7DR(%5Csin%20x%2C%20%5Ccos%20x)%5Cmathrm%20d%20x

换元z%3De%5E%7B%5Cmathrm%20i%20x%7D,则积分变为

%5Coint_%7B%7Cz%7C%3D1%7D%20R%5Cleft(%5Cfrac%7Bz-z%5E%7B-1%7D%7D%7B2%5Cmathrm%20i%7D%2C%5Cfrac%7Bz%2Bz%5E%7B-1%7D%7D%7B2%7D%5Cright)%20%5Cfrac%20%7B%5Cmathrm%20d%20z%7D%7B%5Cmathrm%20i%20z%7D

然后只需对单位圆内奇点的留数求和即可。

3.2 %5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20f(x)%5Cmathrm%20d%20x

其中f(z)在实轴上无奇点,在上半平面除有限个奇点外解析,当z在上半平面及实轴趋于%E2%88%9E时,zf(z)一致趋于0。

首先声明%5Cmathscr%20P%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20f(x)%5Cmathrm%20d%20x%3D%5Clim_%7BR%5Crightarrow%5Cinfty%7D%5Cint_%7B-R%7D%5ER%20f(x)%5Cmathrm%20d%20x被称为该积分的主值。

(积分主值存在时积分值不一定存在,例如%5Csin%20x)

构造一个半圆形回路,再令半径趋于无穷,

构造的回路

则因为半圆弧部分

%5Cleft%7C%5Cint_%7BC_R%7D%20f(z)%20%5Cmathrm%20d%20z%20%5Cright%7C%3D%5Cint_%7BC_R%7D%7Cz%20f(z)%7C%20%5Cleft%7C%5Cfrac%7B%20%5Cmathrm%20d%20z%20%7D%7Bz%7D%5Cright%7C%5Cleqslant%20%5Cmax%7Cz%20f(z)%7C%20%5Ccdot%20%5Cfrac%7B%5Cpi%20R%7D%7BR%7D%3D%5Cpi%5Cmax%7Czf(z)%7C

根据预设条件右边趋于0,所以有

%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20f(x)%5Cmathrm%20d%20x%3D%5Clim_%7BR%5Crightarrow%5Cinfty%7D%5Cint_%7B-R%7D%5ER%20f(x)%5Cmathrm%20d%20x%20%3D%5Csum_%7B%7B%5Crm%20All%7D%5C%3B%7B%5Crm%20Im%7Dz%3E0%7D%0A2%5Cpi%20%5Cmathrm%20i%5C%2C%20%7B%5Crm%20Res%7D%20f(z)

即只需对上半平面所有有限远奇点的留数求和。

3.3 %5Cint_%7B0%7D%5E%7B%5Cinfty%7D%20F(x)%20%5Ccos%20m%20x%20%5Cmathrm%7Bd%7D%20x%2C%20%5Cint_%7B0%7D%5E%7B%5Cinfty%7D%20G(x)%20%5Csin%20m%20x%20%5Cmathrm%7Bd%7D%20x

其中,F(x)是偶函数,G(x)是奇函数,二者在上半平面除有限个奇点外解析,当z%5Crightarrow%20%5Cinfty时,F(x)%2CG(x)一致趋于0。则变形得到

%5Cint_%7B0%7D%5E%7B%5Cinfty%7D%20F(x)%20%5Ccos%20m%20x%20%5Cmathrm%7Bd%7D%20x%3D%5Cfrac12%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20F(x)%20e%5E%7B%5Cmathrm%20imx%7D%20%5Cmathrm%7Bd%7D%20x

%5Cint_%7B0%7D%5E%7B%5Cinfty%7D%20G(x)%20%5Csin%20m%20x%20%5Cmathrm%7Bd%7D%20x%3D%5Cfrac1%7B2%5Cmathrm%20i%7D%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20G(x)%20e%5E%7B%5Cmathrm%20imx%7D%20%5Cmathrm%7Bd%7D%20x

可以证明,

%5Cint_%7B0%7D%5E%7B%5Cinfty%7D%20F(x)%20%5Ccos%20m%20x%20%5Cmathrm%7Bd%7D%20x%3D%5Cpi%20%5Cmathrm%20i%5Csum_%7B%7B%5Crm%20All%20%5C%2CIm%7Dz%3E0%7D%7B%5Crm%20Res%7D%5BF(z)e%5E%7B%5Cmathrm%20imz%7D%5D

%5Cint_%7B0%7D%5E%7B%5Cinfty%7D%20G(x)%20%5Csin%20m%20x%20%5Cmathrm%7Bd%7D%20x%3D%5Cpi%20%5Csum_%7B%7B%5Crm%20All%20%5C%2CIm%7Dz%3E0%7D%7B%5Crm%20Res%7D%5BF(z)e%5E%7B%5Cmathrm%20imz%7D%5D

3.4 实轴上有单极点的情形

如果实轴上有一个单极点,则构造如图的回路,%5Cepsilon充分小。

构造的回路

在单极点%5Calpha附近,

f(z)%20%3D%20%5Cfrac%7B%7B%5Crm%20Res%7Df(%5Calpha)%7D%7Bz-%5Calpha%7D%2Bg(z)

z%5Crightarrow%20%5Calphag(z)%5Crightarrow%200,故可以证明

%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20f(x)%5Cmathrm%20d%20x%20%3D2%5Cpi%20%5Cmathrm%20i%20%5Csum_%7B%7B%5Crm%20All%7D%5C%3B%7B%5Crm%20Im%7Dz%3E0%7D%0A%20%7B%5Crm%20Res%7D%20f(z)-%5Cpi%20%5Cmathrm%20i%20%5Csum_%7B%7B%5Crm%20All%7D%5C%3B%7B%5Crm%20Im%7Dz%3D0%7D%0A%20%7B%5Crm%20Res%7D%20f(z)

简单来说,实轴上的奇点算一半。

注意这里实轴上只能是单极点,否则积分%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20f(x)%5Cmathrm%20d%20x%20并不存在。

3.5 一些结论

根据前面的讨论,可以证明

%5Cint_%7B0%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7B%5Csin%20mx%7D%7Bx%7D%20%5Cmathrm%7B~d%7D%20x%3D%5Cfrac%7B%5Cpi%7D%7B2%7D%5C%2C%7B%5Crm%20sgn%7D%5C%2Cm

对于上半平面处处解析的函数f(z),有希尔伯特变换(色散关系):

%5Cbegin%7Baligned%7D%0A%5Coperatorname%7BRe%7D%20f(%5Calpha)%20%26%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%20%5Cmathscr%7BP%7D%20%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7B%5Coperatorname%7BIm%7D%20f(x)%7D%7Bx-%5Calpha%7D%20%5Cmathrm%7Bd%7D%20x%20%5C%5C%0A%5Coperatorname%7BIm%7D%20f(%5Calpha)%20%26%3D-%5Cfrac%7B1%7D%7B%5Cpi%7D%20%5Cmathscr%7BP%7D%20%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7B%5Coperatorname%7BRe%7D%20f(x)%7D%7Bx-%5Calpha%7D%20%5Cmathrm%7Bd%7D%20x%0A%5Cend%7Baligned%7D

4. 整活

在这些时候,我可以附和着笑,教授是决不责备的。而且教授见了孔乙己,也每每这样问他,引人发笑。孔乙己自己知道不能和他们研究,便只好向大一新生说话。有一回对我说道,“你学过数理方法么?”我略略点一点头。他说,“学过,……我便考你一考。%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20%5Cfrac%7B%5Cmathrm%20d%20x%7D%7Bx%5E2%20%2B1%7D,怎样积的?”我想,挂科一样的人,也配考我么?便回过脸去,不再理会。孔乙己等了许久,很恳切的说道,“不能积罢?……我教给你,记着!这些积分式应该记着。将来做教授的时候,计算要用。”我暗想我和教授的等级还很远呢,而且我们教授也从不手算积分;又好笑,又不耐烦,懒懒的答他道,“谁要你教,不是得%5Cpi么?”孔乙己显出极高兴的样子,将两个指头的长指甲敲着黑板,点头说,“对呀对呀!……这个积分有四样积法,你知道么?”我愈不耐烦了,努着嘴走远。孔乙己刚用指甲蘸了粉笔灰,想在黑板上写字,见我毫不热心,便又叹一口气,显出极惋惜的样子。

有几回,高中物竞生听得笑声,也赶热闹,围住了孔乙己。他便给他们做微分方程题,一人一道。物竞生解完微分方程,仍然不散,眼睛都望着《数学物理方法》。孔乙己着了慌,伸开五指将书罩住,弯腰下去说道,“不多了,我已经不多了。”直起身又看一看书,自己摇头说,“不多不多!多乎哉?不多也。”于是这一群物竞生都在笑声里走散了。

这里积分的四种积法指的是:

① 公式法

%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20%5Cfrac%7B%5Cmathrm%20d%20x%7D%7Bx%5E2%20%2B1%7D%3D%5Carctan%20x%7C_%7B-%5Cinfty%7D%5E%5Cinfty%3D%5Cpi

② 换元积分法

x%3D%5Ctan%20%5Cphi,则

%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20%5Cfrac%7B%5Cmathrm%20d%20x%7D%7Bx%5E2%20%2B1%7D%3D%20%5Cint_%7B-%5Cfrac%20%5Cpi%202%7D%5E%7B%5Cfrac%20%5Cpi%202%7D%20%5Ccos%5E2%20%5Cphi%5Cfrac%7B%5Cmathrm%20d%20%5Cphi%7D%7B%5Ccos%5E2%20%5Cphi%7D%3D%5Cpi

③ “大人,时代变了”

积分的正确求法

④ 留数定理

f(z)%3D(z%5E2%2B1)%5E%7B-1%7D有单极点z%3D%5Cpm%20%5Cmathrm%20i,上半平面:%7B%5Crm%20Res%7D%20f(%5Cmathrm%20i)%3D%5Cfrac1%7B2%5Cmathrm%20i%7D

所以有%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20%5Cfrac%7B%5Cmathrm%20d%20x%7D%7Bx%5E2%20%2B1%7D%3D%5Cfrac%7B2%5Cpi%20%5Cmathrm%20i%7D%7B2%20%5Cmathrm%20i%7D%3D%5Cpi

参考文献

[1] 梁昆淼. 数学物理方法(第四版)[M]. 北京:高等教育出版社,2009.8,51~68.


留数定理||数理方法的评论 (共 条)

分享到微博请遵守国家法律