migarney mathematics
migarney mathematics
migarney数学
1. the set structure of closed function .
1 封闭式函数的集合构造
2. the set structure of open function .
2 开放式函数的集合构造
3. the logic structure of logic mathematics is grammar structure . the logic object of logic mathematics is morpheme elements
3 逻辑数学的逻辑架构是语法结构,逻辑数学的逻辑对象是词素构件
4. the perfect solved method is logic of paradox.
the changing of logic feature is appearing through that having many transition and projection about reference systems .
4 逻辑悖论的完美解决方法
参考系的过渡投影发生逻辑特征的转变
5. the nature source of Valid reasoning and decision in logic mathematics is that the true decision of event structure in logic structure and logic object .
5 逻辑数学中的有效推理形式的产生来源是逻辑架构和逻辑对象的事件构成的真实性判定
6. the calculus and differential equation are false science due to the variate meaning is very indistinct .
6 由于微积分和微分方程的变量指代模糊,所以微积分和微分方程是错误的学科
the define of integral calculus about Newton in Britain.
英国物理学家牛顿的积分学的定义:
∫ g{a} da =G{a}
=g{a.1}×((a.2)-(a.1))
+...+g{a.(n-1)}
×((a.n)-(a.(n-1)))
or =g{a.1}×Δ+...
+g{(a.1)+(n-2)Δ}
×Δ
其中: ((a.n)-(a.(n-1)))↣0
其中:Δ↣0
but it is have no said that the true meaning of variate a from function G{a} in the define of integral calculus about Newton in Britain.that is it is have no said variate a from function G{a} is rely on which variate in set variate <(∑⊕).n>a.n in the define of integral calculus about Newton in Britain. or it is have no said variate a from function G{a} is rely on which variate in set variate <(∑⊕).n>(a.1+(n-1)Δ) in the define of integral calculus about Newton in Britain .
但是在英国物理学家牛顿的积分学的定义中没有指出G{a}函数中的变量a的真正的含义。也就是说,英国物理学家牛顿的积分学没有指出G{a}函数是依赖于
集合变量<(∑⊕).n>a.n中的哪一个的变量。
或者,英国物理学家牛顿的积分学没有指出G{a}函数是依赖于集合变量
<(∑⊕).n>(a.1+(n-1)Δ)中的哪一个的变量。
7. the calculation law of migarney set mathematics.
7
migarney集合数学的运算法则(修改版本)
① H==(<(∑⊕).u>g.u)か(<(∑⊕).u>f.u)
==(<(∑⊕).u>((g.u)+(f.u)))
② H==(<(∑⊕).u>g.u)け(<(∑⊕).u>f.u)
==(<(∑⊕).u>((g.u)-(f.u)))
③ H==(<(∑⊕).u>g.u)と(<(∑⊕).u>f.u)
==(<(∑⊕).u>((g.u)×(f.u)))
④ H==(<(∑⊕).u>g.u)す(<(∑⊕).u>f.u)
==(<(∑⊕).u>((g.u)/(f.u)))
⑤ H==(<(∑⊕).u>g.u)が(<(∑⊕).v>f.v)
==(<(∑⊕).u@v>((g.u)+(f.v)))
⑥ H==(<(∑⊕).u>g.u)げ(<(∑⊕).v>f.v)
==(<(∑⊕).u@v>((g.u)-(f.v)))
⑦ H==(<(∑⊕).u>g.u)ど(<(∑⊕).v>f.v)
==(<(∑⊕).u@v>((g.u)×(f.v)))
⑧ H==(<(∑⊕).u>g.u)ず(<(∑⊕).v>f.v)
==(<(∑⊕).u@v>((g.u)/(f.v)))
⑨ M==(<(∑⊕).u@v>((g.u)+(f.v)))ケ
(<(∑⊕).u>g.u)==(<(∑⊕).v>f.v)
⑩ M==(<(∑⊕).u@v>((g.u)-(f.v)))カ
(<(∑⊕).v>f.v)==(<(∑⊕).u>g.u)
⑩_① M==(<(∑⊕).u@v>((g.u)×(f.v)))ス
(<(∑⊕).v>f.v)==(<(∑⊕).u>g.u)
⑩_② M==(<(∑⊕).u@v>((g.u)/(f.v)))ト
(<(∑⊕).v>f.v)==(<(∑⊕).u>g.u)
8. the direction and reference systems is relative in the migarney set mathematics. so under the condition that the processes of having many transition and converting in the direction and reference systems . the character , that it had many expression to original feature in the original direction and original reference systems, need to have to become all of new expression of the new feature in the new direction and new reference systems for being able to have all of calculation. but the character is still the character forever and only . the nature form of character having no changing forever and only.
8 集合数学中的参考系和方向都是相对的,所以在参考系和方向的过渡转换的过程中,性状在原参考系和原方向所表达的原特征需要经过投影变换到新参考系和新方向之后在表达了新参考系和新方向的新特征之后才能够在新参考系和新方向上面进行耦合计算。但是性状的本质类型不发生改变,性状还是性状。
9. the feature of set function in set mathematics .
9 集合数学的集合函数形式
<[system A -> direction B] and (∑⊕).u>f.u
the works copyright content and the worker information (作品的版权内容和作者信息):
my English name is :
migarney Pierpont Tesla Morgan Rothschild
my Japanese name is : みがに
my Chinese name is : 刘文宇
address now :
中国福建省福州市长乐区金峰镇华刘村
中国福建省福州市长乐区鹤上镇洞湖黄朱村
pictures to be continue .......