欢迎光临散文网 会员登陆 & 注册

拓端tecdat|R语言贝叶斯推断与MCMC:实现Metropolis

2021-07-18 14:13 作者:拓端tecdat  | 我要投稿

原文链接:http://tecdat.cn/?p=21545

原文出处:拓端数据部落公众号

示例1:使用MCMC的指数分布采样

任何MCMC方案的目标都是从“目标”分布产生样本。在这种情况下,我们将使用平均值为1的指数分布作为我们的目标分布。所以我们从定义目标密度开始:

  1. target = function(x){

  2. if(x<0){

  3. return(0)}

  4. else {

  5. return( exp(-x))

  6. }

  7. }

定义了函数之后,我们现在可以用它来计算几个值(只是为了说明函数的概念):

target(1)[1] 0.3678794target(-1)[1] 0

接下来,我们将规划一个Metropolis-Hastings方案,从与目标成比例的分布中进行抽样

  1. x[1] = 3     #这只是一个起始值,我设置为3

  2. for(i in 2:1000){

  3. A = target(proposedx)/target(currentx)

  4. if(runif(1)<A){

  5. x[i] = proposedx       # 接受概率min(1,a)

  6. } else {

  7. x[i] = currentx        #否则“拒绝”行动,保持原样

  8. }

注意,x是马尔可夫链的实现。我们可以画几个x的图:


我们可以将其封装在一个mcmc函数中,以使代码更整洁,这样更改起始值和提议分布更容易


  1. for(i in 2:niter){

  2. currentx = x[i-1]

  3. proposedx = rnorm(1,mean=currentx,sd=proposalsd)

  4. A = target(proposedx)/target(currentx)

  5. if(runif(1)<A){

  6. x[i] = proposedx       # 接受概率min(1,a)

  7. } else {

  8. x[i] = currentx        # 否则“拒绝”行动,保持原样

  9. }

现在我们将运行MCMC方案3次,看看结果有多相似:

  1. z1=MCMC(1000,3,1)

  2. z2=MCMC(1000,3,1)

  3. z3=MCMC(1000,3,1)


  4. plot(z1,type="l")

  1. par(mfcol=c(3,1)) #告诉R将3个图形放在一个页面上


  2. hist(z1,breaks=seq(0,maxz,length=20))

练习

使用函数easyMCMC了解以下内容:

  1. 不同的起始值如何影响MCMC方案?

  2. 较大/较小的提案标准差有什么影响?

  3. 尝试将目标函数更改为

  1. target = function(x){


  2. return((x>0 & x <1) + (x>2 & x<3))

  3. }

这个目标看起来像什么?如果提议sd太小怎么办?(例如,尝试1和0.1)

例2:估计等位基因频率

在对双等位基因座的基因型(如具有AA和AA等位基因的基因座)进行建模时,一个标准的假设是群体是“随机”的。这意味着如果p是等位基因AA的频率,那么基因型

将分别具有频率

p一个简单的先验是假设它在[0,1]上是均匀的。 假设我们抽样n个个体,观察

基因型

基因型

基因型

下面的R代码给出了一个简短的MCMC例程,可以从p的后验分布中进行采样。请尝试遍历该代码,看看它是如何工作的。

  1. prior = function(p){

  2. if((p<0) || (p>1)){  # || 这里意思是“或”

  3. return(0)}

  4. else{

  5. return(1)}

  6. }


  7. likelihood = function(p, nAA, nAa, naa){

  8. return(p^(2*nAA) * (2*p*(1-p))^nAa * (1-p)^(2*naa))

  9. }


  10. psampler = function(nAA, nAa, naa){


  11. for(i in 2:niter){


  12. if(runif(1)<A){

  13. p[i] = newp       # 接受概率min(1,a)

  14. } else {

  15. p[i] = currentp        # 否则“拒绝”行动,保持原样

  16. }

运行此样本。

现在用一些R代码来比较后验样本和理论后验样本(在这种情况下可以通过分析获得;因为我们观察到121个As和79个as,在200个样本中,p的后验样本是β(121+1,79+1)。


  1. hist(z,prob=T)

  2. lines(x,dbeta(x,122, 80))  # 在直方图上叠加β密度

您也可能希望将前5000 z的值丢弃为“burnin”(预烧期)。这里有一种方法,在R中仅选择最后5000 z

hist(z[5001:10000])

练习

研究起点和提案标准偏差如何影响算法的收敛性。

例3:估计等位基因频率和近交系数

一个复杂一点的替代方法是假设人们有一种倾向,即人们会与比“随机”关系更密切的其他人近交(例如,在地理结构上的人口中可能会发生这种情况)。一个简单的方法是引入一个额外的参数,即“近亲繁殖系数”f,并假设

基因型有频率

在大多数情况下,将f作为种群特征来对待是很自然的,因此假设f在各个位点上是恒定的。

请注意,f和p都被约束为介于0和1之间(包括0和1)。对于这两个参数中的每一个,一个简单的先验是假设它们在[0,1]上是独立的。 假设我们抽样n个个体,观察

基因型

基因型

基因型

练习:

  • 编写一个短的MCMC程序,从f和p的联合分布中取样。

  1. sampler = function(){


  2. f[1] = fstartval

  3. p[1] = pstartval

  4. for(i in 2:niter){

  5. currentf = f[i-1]

  6. currentp = p[i-1]

  7. newf = currentf +

  8. newp = currentp +


  9. }

  10. return(list(f=f,p=p)) # 返回一个包含两个名为f和p的元素的“list”

  11. }

  • 使用此样本获得f和p的点估计(例如,使用后验平均数)和f和p的区间估计(例如,90%后验置信区间),数据:

附录:GIBBS采样

您也可以用Gibbs采样器解决这个问题 

为此,您将想要使用以下“潜在变量”表示模型:

将zi相加得到与上述相同的模型:

 


最受欢迎的见解

1.使用R语言进行METROPLIS-IN-GIBBS采样和MCMC运行

2.R语言中的Stan概率编程MCMC采样的贝叶斯模型

3.R语言实现MCMC中的Metropolis–Hastings算法与吉布斯采样

4.R语言BUGS JAGS贝叶斯分析 马尔科夫链蒙特卡洛方法(MCMC)采样

5.R语言中的block Gibbs吉布斯采样贝叶斯多元线性回归

6.R语言Gibbs抽样的贝叶斯简单线性回归仿真分析

7.R语言用Rcpp加速Metropolis-Hastings抽样估计贝叶斯逻辑回归模型的参数

8.R语言使用Metropolis- Hasting抽样算法进行逻辑回归

9.R语言中基于混合数据抽样(MIDAS)回归的HAR-RV模型预测GDP增长


拓端tecdat|R语言贝叶斯推断与MCMC:实现Metropolis的评论 (共 条)

分享到微博请遵守国家法律