欢迎光临散文网 会员登陆 & 注册

Practice_3_Sonine-Gegenbauer Formula

2022-04-27 15:28 作者:Baobhan_Sith  | 我要投稿

Sonine-Gegenbauer formula is an important kind of finite integral involving Bessel Functions.

It can be shown that

%5Cint_0%5E%7B%5Cpi%7D%7B%5Cfrac%7BZ_%7B%5Cnu%7D%5Cleft(%20%5Csqrt%7Bx%5E2%2By%5E2-2xy%5Ccos%20%5Ctheta%7D%20%5Cright)%7D%7B%5Cleft(%20%5Csqrt%7Bx%5E2%2By%5E2-2xy%5Ccos%20%5Ctheta%7D%20%5Cright)%20%5E%7B%5Cnu%7D%7DC_%7Bm%7D%5E%7B%5Cnu%7D%5Cleft(%20%5Ccos%20%5Ctheta%20%5Cright)%20%5Csin%20%5E%7B2%5Cnu%7D%5Ctheta%20d%5Ctheta%7D%3D%5Cfrac%7B%5Cpi%20%5CGamma%20%5Cleft(%202%5Cnu%20%2Bm%20%5Cright)%7D%7B2%5E%7B%5Cnu%20-1%7Dm!%5CGamma%20%5Cleft(%20%5Cnu%20%5Cright)%7D%5Cfrac%7BZ_%7B%5Cnu%20%2Bm%7D%5Cleft(%20x%20%5Cright)%7D%7Bx%5E%7B%5Cnu%7D%7D%5Cfrac%7BJ_%7B%5Cnu%20%2Bm%7D%5Cleft(%20y%20%5Cright)%7D%7By%5E%7B%5Cnu%7D%7D%0A

in which Z is arbitrary cylinder function (J, Y, H)

Above formula holds when %5Cmathrm%7BRe%7D%5C%2C%20%5Cnu%20%3E%5Cfrac%7B1%7D%7B2%7D%0A%0A for any complex x≠0, y

We can deduce it from Gegenbauer addition formula, but this article will give a new appraoch using contour integration.

A special case is 

%5Cint_0%5E%7B%5Cpi%7D%7B%5Cfrac%7BJ_%7B%5Cnu%7D%5Cleft(%20%5Csqrt%7Bx%5E2%2By%5E2-2xy%5Ccos%20%5Ctheta%7D%20%5Cright)%7D%7B%5Cleft(%20%5Csqrt%7Bx%5E2%2By%5E2-2xy%5Ccos%20%5Ctheta%7D%20%5Cright)%20%5E%7B%5Cnu%7D%7D%5Csin%20%5E%7B2%5Cnu%7D%5Ctheta%20d%5Ctheta%7D%3D%5Csqrt%7B%5Cpi%7D2%5E%7B%5Cnu%7D%5CGamma%20%5Cleft(%20%5Cnu%20%2B%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%20%5Cfrac%7BJ_%7B%5Cnu%7D%5Cleft(%20x%20%5Cright)%7D%7Bx%5E%7B%5Cnu%7D%7D%5Cfrac%7BJ_%7B%5Cnu%7D%5Cleft(%20y%20%5Cright)%7D%7By%5E%7B%5Cnu%7D%7D%0A

Proof:

First, we can get a kind of integral expression of Bessel function from series expression of Bessel function and contour integral expression of Gamma function.

J_%7B%5Cnu%7D%5Cleft(%20x%20%5Cright)%20%3D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5En%7D%7Bn!%5CGamma%20%5Cleft(%20n%2B%5Cnu%20%2B1%20%5Cright)%7D%5Cleft(%20%5Cfrac%7Bx%7D%7B2%7D%20%5Cright)%20%5E%7B2n%2B%5Cnu%7D%7D%0A

%3D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5En%7D%7Bn!%7D%5Cleft(%20%5Cfrac%7Bx%7D%7B2%7D%20%5Cright)%20%5E%7B2n%2B%5Cnu%7D%5Cfrac%7B1%7D%7B2%5Cpi%20i%7D%5Cint_%7B%5Csigma%20-i%5Cinfty%7D%5E%7B%5Csigma%20%2Bi%5Cinfty%7D%7B%5Cfrac%7Be%5Et%7D%7Bt%5E%7Bn%2B%5Cnu%20%2B1%7D%7Ddt%7D%7D%0A

%3D%5Cfrac%7B1%7D%7B2%5Cpi%20i%7D%5Cleft(%20%5Cfrac%7Bx%7D%7B2%7D%20%5Cright)%20%5E%7B%5Cnu%7D%5Cint_%7B%5Csigma%20-i%5Cinfty%7D%5E%7B%5Csigma%20%2Bi%5Cinfty%7D%7B%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5En%7D%7Bn!%7D%5Cleft(%20%5Cfrac%7Bx%5E2%7D%7B4t%7D%20%5Cright)%20%5En%7D%5Cfrac%7Be%5Et%7D%7Bt%5E%7B%5Cnu%20%2B1%7D%7Ddt%7D%0A

J_%7B%5Cnu%7D%5Cleft(%20x%20%5Cright)%3D%5Cfrac%7B1%7D%7B2%5Cpi%20i%7D%5Cleft(%20%5Cfrac%7Bx%7D%7B2%7D%20%5Cright)%20%5E%7B%5Cnu%7D%5Cint_%7B%5Csigma%20-i%5Cinfty%7D%5E%7B%5Csigma%20%2Bi%5Cinfty%7D%7B%5Cfrac%7Be%5E%7Bt-%5Cfrac%7Bx%5E2%7D%7B4t%7D%7D%7D%7Bt%5E%7B%5Cnu%20%2B1%7D%7Ddt%7D%0A

Hence, we can use contour integral to express following complicate function

%5Cfrac%7BJ_%7B%5Cnu%7D%5Cleft(%20%5Csqrt%7Bx%5E2%2By%5E2-2xy%5Ccos%20%5Ctheta%7D%20%5Cright)%7D%7B%5Cleft(%20%5Csqrt%7Bx%5E2%2By%5E2-2xy%5Ccos%20%5Ctheta%7D%20%5Cright)%20%5E%7B%5Cnu%7D%7D%3D%5Cfrac%7B1%7D%7B2%5Cpi%20i%7D%5Cfrac%7B1%7D%7B2%5E%7B%5Cnu%7D%7D%5Cint_%7B%5Csigma%20-i%5Cinfty%7D%5E%7B%5Csigma%20%2Bi%5Cinfty%7D%7B%5Cfrac%7B1%7D%7Bt%5E%7B%5Cnu%20%2B1%7D%7De%5E%7Bt-%5Cfrac%7Bx%5E2%2By%5E2%7D%7B4t%7D%7De%5E%7B%5Cfrac%7Bxy%5Ccos%20%5Ctheta%7D%7B2t%7D%7Ddt%7D%0A

Let I denote the integral in the special case of Sonine-Gegenbauer formula, plug above expression into I, we obtain

I%3D%5Cint_0%5E%7B%5Cpi%7D%7B%5Cleft(%20%5Cfrac%7B1%7D%7B2%5Cpi%20i%7D%5Cfrac%7B1%7D%7B2%5E%7B%5Cnu%7D%7D%5Cint_%7B%5Csigma%20-i%5Cinfty%7D%5E%7B%5Csigma%20%2Bi%5Cinfty%7D%7B%5Cfrac%7B1%7D%7Bt%5E%7B%5Cnu%20%2B1%7D%7De%5E%7Bt-%5Cfrac%7Bx%5E2%2By%5E2%7D%7B4t%7D%7De%5E%7B%5Cfrac%7Bxy%5Ccos%20%5Ctheta%7D%7B2t%7D%7Ddt%7D%20%5Cright)%20%5Csin%20%5E%7B2%5Cnu%7D%5Ctheta%20d%5Ctheta%7D%0A

Exchange the order of the double integral, and note that the integral nested in contour integral is modified Bessel function of the first kind, hence

I%3D%5Cfrac%7B2%5E%7B%5Cnu%7D%5CGamma%20%5Cleft(%20%5Cnu%20%2B%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%20%5Csqrt%7B%5Cpi%7D%7D%7B%5Cleft(%20xy%20%5Cright)%20%5E%7B%5Cnu%7D%7D%5Cfrac%7B1%7D%7B2%5Cpi%20i%7D%5Cint_%7B%5Csigma%20-i%5Cinfty%7D%5E%7B%5Csigma%20%2Bi%5Cinfty%7D%7B%5Cfrac%7B1%7D%7Bt%7De%5E%7Bt-%5Cfrac%7Bx%5E2%2By%5E2%7D%7B4t%7D%7DI_%7B%5Cnu%7D%5Cleft(%20%5Cfrac%7Bxy%7D%7B2t%7D%20%5Cright)%20dt%7D%0A

Denote J%3D%5Cfrac%7B1%7D%7B2%5Cpi%20i%7D%5Cint_%7B%5Csigma%20-i%5Cinfty%7D%5E%7B%5Csigma%20%2Bi%5Cinfty%7D%7B%5Cfrac%7B1%7D%7Bp%7De%5E%7Bp-%5Cfrac%7Bx%5E2%2By%5E2%7D%7B4p%7D%7DI_%7B%5Cnu%7D%5Cleft(%20%5Cfrac%7Bxy%7D%7B2p%7D%20%5Cright)%20dp%7D%0A

Expand e%5E%7B-%5Cfrac%7By%5E2%7D%7B4p%7D%7D and I_%7B%5Cnu%7D%5Cleft(%20%5Cfrac%7Bxy%7D%7B2p%7D%20%5Cright)%20 into series, then change the summation order to 11,21,12,31,22,13,41,32,23,14..., we obtain

J%3D%5Cfrac%7B1%7D%7B2%5Cpi%20i%7D%5Cint_%7B%5Csigma%20-i%5Cinfty%7D%5E%7B%5Csigma%20%2Bi%5Cinfty%7D%7B%5Cleft(%20%5Cfrac%7Bxy%7D%7B4p%7D%20%5Cright)%20%5E%7B%5Cnu%7D%5Cfrac%7B1%7D%7Bp%7De%5E%7Bp-%5Cfrac%7Bx%5E2%7D%7B4p%7D%7D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5En%7D%7Bn!%7D%5Cleft(%20%5Cfrac%7By%5E2%7D%7B4p%7D%20%5Cright)%20%5En%7D%5Csum_%7Bm%3D0%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B1%7D%7Bm!%5CGamma%20%5Cleft(%20m%2B%5Cnu%20%2B1%20%5Cright)%7D%5Cleft(%20%5Cfrac%7Bx%5E2y%5E2%7D%7B16p%5E2%7D%20%5Cright)%20%5Em%7Ddp%7D%0A

%3D%5Cfrac%7B1%7D%7B2%5Cpi%20i%7D%5Cint_%7B%5Csigma%20-i%5Cinfty%7D%5E%7B%5Csigma%20%2Bi%5Cinfty%7D%7B%5Cleft(%20%5Cfrac%7Bxy%7D%7B4p%7D%20%5Cright)%20%5E%7B%5Cnu%7D%5Cfrac%7B1%7D%7Bp%7De%5E%7Bp-%5Cfrac%7Bx%5E2%7D%7B4p%7D%7D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%7B%5Csum_%7Bm%3D0%7D%5En%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5En%7D%7B%5Cleft(%20n-m%20%5Cright)%20!%7D%5Cleft(%20%5Cfrac%7By%5E2%7D%7B4p%7D%20%5Cright)%20%5En%5Cfrac%7B1%7D%7Bm!%5CGamma%20%5Cleft(%20m%2B%5Cnu%20%2B1%20%5Cright)%7D%5Cleft(%20-%5Cfrac%7Bx%5E2%7D%7B4p%7D%20%5Cright)%20%5Em%7D%7Ddp%7D%0A

Note that the series which sum is from 0 to n is a confluent hypergeometric function, we can use pffaf transform on it, then expand it into series and exchange the order of summation and integration

J%3D%5Cfrac%7B1%7D%7B2%5Cpi%20i%7D%5Cint_%7B%5Csigma%20-i%5Cinfty%7D%5E%7B%5Csigma%20%2Bi%5Cinfty%7D%7B%5Cleft(%20%5Cfrac%7Bxy%7D%7B4p%7D%20%5Cright)%20%5E%7B%5Cnu%7D%5Cfrac%7Be%5Ep%7D%7Bp%7D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5En%7D%7Bn!%5CGamma%20%5Cleft(%20%5Cnu%20%2B1%20%5Cright)%7D%5Cleft(%20%5Cfrac%7By%5E2%7D%7B4p%7D%20%5Cright)%20%5En%7D%5C%2C%5C%2C_1F_1%5Cleft(%20n%2B%5Cnu%20%2B1%3B%5Cnu%20%2B1%3B-%5Cfrac%7Bx%5E2%7D%7B4p%7D%20%5Cright)%20dp%7D%0A

%3D%5Cleft(%20%5Cfrac%7Bxy%7D%7B4%7D%20%5Cright)%20%5E%7B%5Cnu%7D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5En%7D%7Bn!%5CGamma%20%5Cleft(%20n%2B%5Cnu%20%2B1%20%5Cright)%7D%5Cleft(%20%5Cfrac%7By%5E2%7D%7B4%7D%20%5Cright)%20%5En%7D%5Csum_%7Bm%3D0%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5Em%5CGamma%20%5Cleft(%20m%2Bn%2B%5Cnu%20%2B1%20%5Cright)%7D%7Bm!%5CGamma%20%5Cleft(%20m%2B%5Cnu%20%2B1%20%5Cright)%7D%5Cleft(%20%5Cfrac%7Bx%5E2%7D%7B4%7D%20%5Cright)%20%5Em%7D%5Cfrac%7B1%7D%7B2%5Cpi%20i%7D%5Cint_%7B%5Csigma%20-i%5Cinfty%7D%5E%7B%5Csigma%20%2Bi%5Cinfty%7D%7B%5Cfrac%7Be%5Ep%7D%7Bp%5E%7Bm%2Bn%2B%5Cnu%20%2B1%7D%7Ddp%7D%0A

%3D%5Cleft(%20%5Cfrac%7Bxy%7D%7B4%7D%20%5Cright)%20%5E%7B%5Cnu%7D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5En%7D%7Bn!%5CGamma%20%5Cleft(%20n%2B%5Cnu%20%2B1%20%5Cright)%7D%5Cleft(%20%5Cfrac%7By%5E2%7D%7B4%7D%20%5Cright)%20%5En%7D%5Csum_%7Bm%3D0%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5Em%7D%7Bm!%5CGamma%20%5Cleft(%20m%2B%5Cnu%20%2B1%20%5Cright)%7D%5Cleft(%20%5Cfrac%7Bx%5E2%7D%7B4%7D%20%5Cright)%20%5Em%7D%3DJ_%7B%5Cnu%7D%5Cleft(%20x%20%5Cright)%20J_%7B%5Cnu%7D%5Cleft(%20y%20%5Cright)%20%0A

Hence

I%3D%5Cint_0%5E%7B%5Cpi%7D%7B%5Cfrac%7BJ_%7B%5Cnu%7D%5Cleft(%20%5Csqrt%7Bx%5E2%2By%5E2-2xy%5Ccos%20%5Ctheta%7D%20%5Cright)%7D%7B%5Cleft(%20%5Csqrt%7Bx%5E2%2By%5E2-2xy%5Ccos%20%5Ctheta%7D%20%5Cright)%20%5E%7B%5Cnu%7D%7D%5Csin%20%5E%7B2%5Cnu%7D%5Ctheta%20d%5Ctheta%7D%0A

%3D%5Cfrac%7B2%5E%7B%5Cnu%7D%5CGamma%20%5Cleft(%20%5Cnu%20%2B%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%20%5Csqrt%7B%5Cpi%7D%7D%7B%5Cleft(%20xy%20%5Cright)%20%5E%7B%5Cnu%7D%7DJ%3D2%5E%7B%5Cnu%7D%5CGamma%20%5Cleft(%20%5Cnu%20%2B%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%20%5Csqrt%7B%5Cpi%7D%5Cfrac%7BJ_%7B%5Cnu%7D%5Cleft(%20x%20%5Cright)%7D%7Bx%5E%7B%5Cnu%7D%7D%5Cfrac%7BJ_%7B%5Cnu%7D%5Cleft(%20y%20%5Cright)%7D%7By%5E%7B%5Cnu%7D%7D%0A

Practice_3_Sonine-Gegenbauer Formula的评论 (共 条)

分享到微博请遵守国家法律