哥德巴赫猜想漫谈专题2

每个大于等于6的偶数N都是两个奇素数之和,r2(N)≥1
作者:崔 坤
中国山东青岛即墨 E-mail:cwkzq@126.com
证明:
根据秘鲁数学家哈罗德·贺欧夫格特已经彻底地证明了的三素数定理:
每个大于等于9的奇数都是三个奇素数之和,
每一个奇素数都可以重复使用。
它用下列公式表示:
Q是每个≥9的奇数,奇素数:q1≥3,q2≥3,q3≥3,
则Q=q1+q2+q3
根据加法交换结合定律,
不妨设:
q1≥q2≥q3≥3
Q+3=q1+q2+q3+3
Q+3-q3=3+q1+q2
显见,有且仅有q3=3时,
等式左边Q+3-q3=Q,
如此我们得到了一个新的推论:
Q=3+q1+q2
左边Q表示每个大于等于9的奇数,
右边表示3+2个奇素数的和。
结论:每一个大于或等于9的奇数Q都是3+2个奇素数之和
实际上:数学家们验证了6至350亿亿的每个偶数都是2个奇素数之和,
那么6至350亿亿的每个偶数加3,就得到了:
9至3500000000000000003的每个奇数都是3+2个奇素数之和,
这验证了三素数定理推论Q=3+q1+q2的正确性。
根据三素数定理推论Q=3+q1+q2
由此得出:每个大于等于6的偶数=Q-3=q1+q2
故“每一个大于或等于6的偶数N都是两个奇素数之和”,
即总有r2(N)≥1