股票量化软件:赫兹量化自适应算法--附加功能和测试
在主要系列中操作
交易是按仓位系列进行的。 为交易的金融产品分配开立仓位,因其入场点很模糊,故把资金切分为几部分。 该算法可以预测某个区域发生逆转的概率,然而它不能确切判定价格何时逆转。 因此,为了补偿开仓时发生的错误,根据仓位序列来累积所需交易量。
在上一篇文章中,我演示了该算法如何生成开仓信号,并在若干尺度上同时分析,从而定义最大趋势尺度。 基本操作算法已讲述过了。 价格序列图表并非由一个尺度构成。 同一时刻在若干尺度上显示出趋势,而在其他尺度上则可能是横盘。 此功能应是为了获取盈利。
在此,趋势部分是片段,趋势持续概率超过 50%,而横盘部分,其趋势反转概率超过 50%。 换言之,如果前一块正在增长,那么在趋势部分中,新块也将以高于 50% 的概率增长。
基于较小尺度波动纠正序列平仓点位
如我先前所写,序列的平仓点位(从主要趋势回滚)取决于回滚速度。 速度是按价格回滚所需的步数来衡量。 步数越高,自趋势走势的回滚则越小。 此功能与趋势出现的基本面原因相关联。 趋势创建的成交量超过了当前的流动性。 换言之,大量开仓或平仓。 引发趋势走势的条件仓位应被平仓。 这需要流动性。 如果立即平仓,则回滚为之前趋势的 100%,也就是说,将出现方向相反但完全相同的趋势走势。 但平仓的速度越慢,回滚就越少。 在这种情况下,走势是由单个或多个市场参与者引发的都无所谓。 机制是相同的。
该算法基于计算基本时间帧块的数量来调整平仓点位。 在大尺度上,这略显不足。 大尺度块具有自身的价格波动,由于块只是为方便起见而创建的价格走势的条件示意,因此也应考虑调整平仓点位。
最正确的做法是计算所有东西,并考虑所有波动。 但出于简单起见,我将以不同的方式进行操作(该算法已经相当复杂)。 我打算利用一个金融产品的附加序列盈利来调整平仓点位。 这会占用附加序列所获利润的 80%。 如果所有持仓均在参考点位平仓,我们计算该序列将会获取的利润金额(以存款货币计)。 附加序列的当前可用利润被添加到该序列的当前利润之中。 如果所获利润值在平仓点位超过或等于所计算的利润,则主要序列已完成。 回滚被认为已经结束,且该序列已完成。