欢迎光临散文网 会员登陆 & 注册

2023全国乙卷数学立体几何大题解析

2023-06-12 12:00 作者:げいしも_芸  | 我要投稿


2023全国乙卷19题

(图片来自BV1A14y1S7Zt 25:00处)

如图,以B为原点,BA为x轴,BC为y轴,建立空间直角坐标系Oxyz:不难得到:

A(2%2C0%2C0)%5C%20B(0%2C0%2C0)%5C%20C(0%2C2%5Csqrt2%2C0)%5C%20O(0%2C%5Csqrt%202%2C0)

P(x_p%2Cy_p%2Cz_p)

由于PB=PC=√6,可以得到:

%5Cbegin%7Bcases%7D%0A%20y_p%3D%5Csqrt%202%20%5C%5C%0Ax_p%5E2%2By_p%5E2%2Bz_p%5E2%3D6%0A%5Cend%7Bcases%7D

%E8%80%8CAO%3D%5Csqrt%205%20OD%EF%BC%8C%E5%8D%B3AO%5E2%3D5OD%5E2

可得:

(%5Cfrac%20%7Bx_p%7D%202-2)%5E2%2B(%5Cfrac%7By_p%7D%202)%5E2%2B(%5Cfrac%20%7Bz_p%7D%202)%5E2%3D5%5B(%5Cfrac%20%7Bx_p%7D2)%5E2%2B(%5Cfrac%20%7By_p%7D%202-%5Csqrt%202)%5E2%2B(%5Cfrac%20%7Bz_p%7D%202)%5E2%5D

解得:

x_p%3D-1%2Cy_p%3D%5Csqrt%202%2Cz_p%3D%5Csqrt%203

于是有:

D(-%5Cfrac%7B1%7D2%2C%20%5Cfrac%7B%5Csqrt%202%7D2%2C%5Cfrac%7B%5Csqrt%203%7D2)%5C%20E(%5Cfrac%201%202%2C%5Cfrac%7B%5Csqrt%202%7D2%2C%5Cfrac%7B%5Csqrt%203%7D2)

而在平面ABC中

%5Cbecause%20AO%3Ay%3D-%5Cfrac%7B%5Csqrt%202%7D2%20x%2B%5Csqrt%202%EF%BC%8CBF%5Cbot%20AO

%5Ctherefore%20BF%3Ay%3D%5Csqrt%202%20x%EF%BC%8CF(1%2C%5Csqrt%202%2C0)%EF%BC%8C%5Cvec%7BEF%7D%3D(%5Cfrac%201%202%2C%5Cfrac%7B%5Csqrt%202%7D2%2C-%5Cfrac%7B%5Csqrt%203%7D2)

由ADO三点可得方程:

%5Cbegin%7Bcases%7D%0A2A%2BD%3D0%5C%5C%0A-%5Cfrac%201%202A%2B%5Cfrac%7B%5Csqrt%202%7D2B%2B%5Cfrac%7B%5Csqrt%203%7D2C%2BD%3D0%5C%5C%0A%5Csqrt%202B%2BD%3D0%0A%5Cend%7Bcases%7D

解得:

A%3D-%5Cfrac%2012D%2CB%3D-%5Cfrac%7B%5Csqrt%202%7D2D%2CC%3D%5Cfrac%7B%5Csqrt%203%7D2D

所以有::

%E5%B9%B3%E9%9D%A2AOD%EF%BC%9Ax%2B%5Csqrt%202y%2B%5Csqrt%203z-2%3D0%2C%5Cvec%7Bn_1%7D%3D(1%2C%5Csqrt%202%2C%5Csqrt%203)

%E8%80%8C%5Cvec%7BEF%7D%5Ccdot%5Cvec%7Bn_1%7D%3D0%EF%BC%8C%E5%8D%B3EF%5Cbot%20%E5%B9%B3%E9%9D%A2AOD%EF%BC%8CQ.E.D.

由BEF三点可得方程:

%5Cbegin%7Bcases%7D%0AD%3D0%5C%5C%0A%5Cfrac%2012A%2B%5Cfrac%7B%5Csqrt%202%7D2%20B%2B%5Cfrac%7B%5Csqrt%203%7D2C%2BD%3D0%5C%5C%0AA%2B%5Csqrt%202B%3D0%0A%5Cend%7Bcases%7D

解得:A%3D-%5Csqrt%202B%2CC%3D0

所以有:

%E5%B9%B3%E9%9D%A2BEF%3A%5Csqrt%202x-y%3D0%2C%5Cvec%7Bn_2%7D%3D(%5Csqrt%202%2C-1%2C0)

%E8%80%8C%5Cvec%7Bn_1%7D%5Ccdot%5Cvec%7Bn_2%7D%3D0%EF%BC%8C%E5%8D%B3%E5%B9%B3%E9%9D%A2ADO%5Cbot%20%E5%B9%B3%E9%9D%A2BEF%EF%BC%8CQ.E.D.

%E5%8F%88%E6%9C%89%EF%BC%9A%E5%B9%B3%E9%9D%A2ABC%3Az%3D0%2C%5Cvec%7Bn_3%7D%3D(0%2C0%2C1)

容易知道,二面角D-AO-C为平面ADO与平面ABC的夹角,而当这两个平面的法向量的z分量均大于零时,二面角D-AO-C的正弦值与n_1和n_3夹角的正弦值一致

%5Ctherefore%20%5Ccos%5Ctheta%3D%5Cfrac%7B%5Cvec%7Bn_1%7D%5Ccdot%5Cvec%7Bn_3%7D%7D%7B%5Cvert%5Cvec%7Bn_1%7D%5Cvert%5Cvert%5Cvec%7Bn_3%7D%5Cvert%7D%3D%5Cfrac%7B%5Csqrt%202%7D%7B2%7D

%5Ctherefore%20%5Csin%5Ctheta%3D%5Csqrt%7B1-%5Ccos%20%5E2%5Ctheta%7D%3D%5Cfrac%7B%5Csqrt%202%7D%7B2%7D

小小总结一下,这题的难度并不高,但是有听说很多考生连第一问都做不出,我想应该是心态的原因,也有可能是第一题过于执着地使用几何方法(当然纯几何也能做,就是稍微复杂一点),对于条件适宜的立体几何,建系往往是明智之举



2023全国乙卷数学立体几何大题解析的评论 (共 条)

分享到微博请遵守国家法律