拓端tecdat|R语言自适应LASSO 多项式回归、二元逻辑回归和岭回归应用分析
原文链接:http://tecdat.cn/?p=21602
原文出处:拓端数据部落公众号
正则化(regularization)
正则化路径是在正则化参数lambda的值网格上计算套索LASSO或弹性网路惩罚的正则化路径。该算法速度快,可以利用输入矩阵x中的稀疏性,拟合线性、logistic和多项式、poisson和Cox回归模型。可以通过拟合模型进行各种预测。它还可以拟合多元线性回归。”
例子
加载数据
这里加载了一个高斯(连续Y)的例子。
初始岭回归
执行k-折交叉验证 .
这个初始过程给出了基于10折交叉验证选择的最佳岭回归模型的一组系数,使用平方误差度量
作为模型性能度量。
KNNL和Hadi中提到的另一种选择lambda的方法是选择最小的lambda,这样系数的轨迹是稳定的,VIF变得足够小。在这种情况下,VIF的定义必须包括惩罚因子lambda,这在Hadi的p295和knll的p436中有说明。
是标准化的协变量矩阵.
是原始非标准化协变量的相关矩阵
. 该计算可定义如下。
自适应LASSO
那个惩罚系数参数允许指定系数特定的惩罚级别。这里我们使用自适应LASSO惩罚,即最佳岭系数绝对值的逆。
最终模型Rsquare
交叉验证测试集Rsquare
多项式例子
最终模型正确分类率
交叉验证测试集正确分类率
二元逻辑回归示例
绘制roc曲线
交叉验证测试集AUC
最受欢迎的见解
1.R语言多元Logistic逻辑回归 应用案例
2.面板平滑转移回归(PSTR)分析案例实现
3.matlab中的偏最小二乘回归(PLSR)和主成分回归(PCR)
4.R语言泊松Poisson回归模型分析案例
5.R语言回归中的Hosmer-Lemeshow拟合优度检验
6.r语言中对LASSO回归,Ridge岭回归和Elastic Net模型实现
7.在R语言中实现Logistic逻辑回归
8.python用线性回归预测股票价格
9.R语言如何在生存分析与Cox回归中计算IDI,NRI指标