欢迎光临散文网 会员登陆 & 注册

一个奇怪的级数求和......

2023-07-19 10:00 作者:げいしも_芸  | 我要投稿

原题如下图,规则很奇怪,看起来很棘手,但求解却很令人舒适

首先,我们引入一个辅助函数ψ(x),即双伽马函数(Digamma function)来解题,其定义式为:

%5Cpsi(x)%3D%5Cfrac%20%7B%5Ctext%20d%7D%7B%5Ctext%20dx%7D%5Cln%5CGamma%20(x)

其中Γ(x)被称作为伽马函数(Gamma function),也就是我们常说的阶乘,其定义如下:

%5CGamma(x)%3D%5Cprod_%7Bn%3D0%7D%5E%7Bx-1%7Dn%2Cx%5Cin%20%5Cmathbb%7BZ%7D%5E%2B

但为了计算非正整数的阶乘,我们更常用到其一般形式:

%5CGamma(s)%3D%5Cint_0%5E%7B%5Cinfty%7De%5E%7B-s%7Dx%5E%7Bs-1%7D%5Ctext%20dx%2Cs%5Cin%20%5Cmathbb%7BR%7D

不过这里我们要用方法的与伽马函数无关,而是双伽马函数的另一种形式(无穷级数和表达):

%5Cpsi(z)%3D-%5Cgamma%2B%5Csum_%7Bn%3D0%7D%5E%5Cinfty%5Cleft(%20%5Cfrac%201%7Bn%2B1%7D-%5Cfrac%201%7Bn%2Bz%7D%5Cright)

其中γ被称为欧拉-马斯克若尼常数(Euler-Mascheroni constant),其定义式为:

%5Cgamma%3D%5Clim_%7BN%5Crightarrow%2B%5Cinfty%7D(%5Csum_%7Bn%3D1%7D%5EN%20%5Cfrac%201n-%5Cln%20N)

其值约为γ≈0.577

我们计

S%3D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%5Cleft(%20%5Cfrac%201%7B7n%2B1%7D%2B%5Cfrac%201%7B7n%2B2%7D-%5Cfrac%201%7B7n%2B3%7D%2B%5Cfrac%201%7B7n%2B4%7D-%5Cfrac%201%7B7n%2B5%7D-%5Cfrac1%7B7n%2B6%7D%5Cright)

不难知道S是绝对收敛的,也就符合黎曼重排定理,于是我们可以对S的求和顺序进行重排,得到:

7S%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty%5Cleft%5B%20%5Cleft(%5Cfrac%201%7Bn%2B%5Cfrac%2017%7D%2B%5Cfrac%201%7Bn%2B%5Cfrac%2027%7D%2B%5Cfrac%201%7Bn%2B%5Cfrac%2047%7D%5Cright)-%5Cleft%20(%5Cfrac%201%7Bn%2B%5Cfrac%2037%7D%2B%5Cfrac%201%7Bn%2B%5Cfrac%2057%7D%2B%5Cfrac%201%7Bn%2B%5Cfrac%2067%7D%0A%5Cright%20)%5Cright%5D

%3D-%5Cgamma%2B%5Csum_%7Bn%3D0%7D%5E%5Cinfty%5Cleft(%5Cfrac%201%7Bn%2B1%7D-%5Cfrac1%7Bn%2B%5Cfrac%2037%7D%5Cright)-%5Cgamma%2B%5Csum_%7Bn%3D0%7D%5E%5Cinfty%5Cleft(%5Cfrac%201%7Bn%2B1%7D-%5Cfrac1%7Bn%2B%5Cfrac%2057%7D%5Cright)-%5Cgamma%2B%5Csum_%7Bn%3D0%7D%5E%5Cinfty%5Cleft(%5Cfrac%201%7Bn%2B1%7D-%5Cfrac1%7Bn%2B%5Cfrac%2067%7D%5Cright)

%2B%5Cgamma-%5Csum_%7Bn%3D0%7D%5E%5Cinfty%5Cleft(%5Cfrac%201%7Bn%2B1%7D-%5Cfrac1%7Bn%2B%5Cfrac%2017%7D%5Cright)%2B%5Cgamma-%5Csum_%7Bn%3D0%7D%5E%5Cinfty%5Cleft(%5Cfrac%201%7Bn%2B1%7D-%5Cfrac1%7Bn%2B%5Cfrac%2027%7D%5Cright)%2B%5Cgamma-%5Csum_%7Bn%3D0%7D%5E%5Cinfty%5Cleft(%5Cfrac%201%7Bn%2B1%7D-%5Cfrac1%7Bn%2B%5Cfrac%2047%7D%5Cright)

%3D%5Cpsi(%5Cfrac%2037)%2B%5Cpsi%20(%5Cfrac%2057)%2B%5Cpsi(%5Cfrac%2067)-%5Cpsi(%5Cfrac%2017)-%5Cpsi(%5Cfrac%2027)-%5Cpsi(%5Cfrac%2047)

而对于双伽马函数,我们有如下反射公式(类似于伽马函数的余元公式)成立:

%5Cpsi(1-x)-%5Cpsi(x)%3D%5Cpi%5Ccot(%5Cpi%20x)%2Cx%5Cin%20(2k%2C2k%2B1)%2Ck%5Cin%20%5Cmathbb%7BZ%7D

利用反射公式,我们得到:

7S%3D-%5Cpi%5Ccot(%5Cfrac%20%7B3%5Cpi%7D%7B7%7D)%2B%5Cpi%5Ccot(%5Cfrac%20%7B2%5Cpi%7D%7B7%7D)%2B%5Cpi%5Ccot(%5Cfrac%20%7B%5Cpi%7D%7B7%7D)

由三角函数的诱导公式:

%5Ctan%5Ctheta%3D%5Ccot(%5Cfrac%5Cpi%202-%5Ctheta)

得到:

%5Cfrac%7B7S%7D%7B%5Cpi%7D%3D-%5Ctan(%5Cfrac%7B%5Cpi%7D%7B14%7D)%2B%5Ctan(%5Cfrac%7B3%5Cpi%7D%7B14%7D)%2B%5Ctan(%5Cfrac%7B5%5Cpi%7D%7B14%7D)

于是我们只需要对这个三角函数式进行计算即可得到最终的结果

我们令:

%5Ctheta%3D(2k%2B1)%5Cfrac%5Cpi%20%7B14%7D%2Ck%5Cin%5C%7B0%2C1%2C2%2C4%2C5%2C6%5C%7D

一方面,我们有:

%5Ctan%207%5Ctheta%3D%5Ctan((2k%2B1)%5Cfrac%7B%5Cpi%7D2)

其为一个无意义的数,另一方面,我们有:

%5Ctan7%5Ctheta%3D%5Ctan(6%5Ctheta%2B%5Ctheta)%3D%5Cfrac%7B%5Ctan%206%5Ctheta%2B%5Ctan%5Ctheta%7D%7B1-%5Ctan%206%5Ctheta%5Ctan%5Ctheta%7D

于是我们可以得到:

1-%5Ctan6%5Ctheta%5Ctan%5Ctheta%3D0

于是有:

%5Ctan6%5Ctheta%3D%5Cfrac%201%7B%5Ctan%5Ctheta%7D

将tan6θ展开,令α=tanθ,我们得到:

%5Cfrac%201%7B%5Calpha%7D%3D%5Cfrac%7B6%5Calpha%20%5E5-20%5Calpha%20%5E3%2B6%5Calpha%7D%7B-%5Calpha%5E6%2B15%5Calpha%20%5E4-15%5Calpha%5E2%2B1%7D

整理后得到方程:

7%5Calpha%5E6-35%5Calpha%5E4%2B21%5Calpha%5E2-1%3D0(*)

该方程的六个根便是tanθ的六个值

接下来便是整个证明中最巧妙的一部分:如何在不直接求解该方程的情况下得到原式的值

根据诱导公式,我们知道:

%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0A%20%5Ctan%5Cfrac%20%7B%5Cpi%7D%7B14%7D%2B%5Ctan%5Cfrac%7B13%5Cpi%7D%7B14%7D%3D0%5C%5C%0A%20%5Ctan%5Cfrac%20%7B3%5Cpi%7D%7B14%7D%2B%5Ctan%5Cfrac%7B11%5Cpi%7D%7B14%7D%3D0%20%20%20%20%5C%5C%0A%5Ctan%5Cfrac%20%7B5%5Cpi%7D%7B14%7D%2B%5Ctan%5Cfrac%7B9%5Cpi%7D%7B14%7D%3D0%0A%5Cend%7Bmatrix%7D%5Cright.

于是根据韦达定理,我们可以得到:

%5Csigma_6%3D-%5Cfrac%2017

所以

%5Ctan%5Cfrac%7B%5Cpi%7D%7B14%7D%5Ctan%5Cfrac%7B3%5Cpi%7D%7B14%7D%5Ctan%5Cfrac%7B5%5Cpi%7D%7B14%7D%3D%5Cfrac%201%7B%5Csqrt%207%7D

%5Csigma_2%3D5

%5Ctan%5E2%5Cfrac%7B%5Cpi%7D%7B14%7D%2B%5Ctan%5E2%5Cfrac%7B3%5Cpi%7D%7B14%7D%2B%5Ctan%5E2%5Cfrac%7B5%5Cpi%7D%7B14%7D%3D5

以β=1/α代替(*)式中的α,得到关于β的方程(这里β可表示cotθ)

%5Cbeta%5E6-21%5Cbeta%5E4%2B35%5Cbeta%20%5E2-7%3D0

再次使用韦达定理(σ_2)得到:

%5Ccot%5E2%5Cfrac%7B%5Cpi%7D%7B14%7D%2B%5Ccot%5E2%5Cfrac%7B3%5Cpi%7D%7B14%7D%2B%5Ccot%5E2%5Cfrac%7B5%5Cpi%7D%7B14%7D%3D21

我们计

%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0A-%5Ctan%5Cfrac%7B%5Cpi%7D%7B14%7D%2B%5Ctan%5Cfrac%7B3%5Cpi%7D%7B14%7D%2B%5Ctan%5Cfrac%7B5%5Cpi%7D%7B14%7D%3D%5Csqrt%207%20x_1%0A%20%5C%5C%20%5Ccot%5Cfrac%7B%5Cpi%7D%7B14%7D-%5Ccot%5Cfrac%7B3%5Cpi%7D%7B14%7D-%5Ccot%5Cfrac%7B5%5Cpi%7D%7B14%7D%3D%5Csqrt%207%20x_2%0A%5Cend%7Bmatrix%7D%5Cright.

不难发现:

%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0A%207x_1%5E2%3D5%2B2x_2%0A%5C%5C7x_2%5E2%3D21-14x_1%0A%5Cend%7Bmatrix%7D%5Cright.

由tanx和cotx在(0,π/2)的单调性我们知道x_1和x_2均大于零,而该方程组有唯一正数解组

(x_1%2Cx_2)%3D(1%2C1)

于是:

S%3D%5Cfrac%7B%5Cpi%7D%7B7%7D%5Cleft%20(-%5Ctan%5Cfrac%7B%5Cpi%7D%7B14%7D%2B%5Ctan%5Cfrac%7B3%5Cpi%7D%7B14%7D%2B%5Ctan%5Cfrac%7B5%5Cpi%7D%7B14%7D%5Cright%20)

%3D%5Cfrac%5Cpi%207%5Ccdot%20%5Csqrt%207%20x_1

%3D%5Cfrac%7B%5Cpi%7D%7B%5Csqrt7%7D

解答完毕


一个奇怪的级数求和......的评论 (共 条)

分享到微博请遵守国家法律