欢迎光临散文网 会员登陆 & 注册

对数函数连续性的证明

2022-06-11 17:54 作者:奥博格沙特  | 我要投稿

求证:f(x)%3D%5Clog_a%20x%20 (a%3E0a%5Cneq%201)(0%2C%2B%E2%88%9E)连续.


本证明将直接用函数连续的定义证明,而不用“可导必连续”证明.(事实上,如用“可导必连续”证明,则还需证明对数函数可导,最终还将归结为函数极限的问题.)

注:%5Cforall%20%5Cdelta%20%3E0 表示“任意”;%5Cexists%20 表示“存在”;s.t. 表示“使得”


证明:即证%5Clim_%7Bx%5Cto%20x_%7B0%7D%20%7D%20%5Clog_a%20x%20%3D%5Clog_a%20x_%7B0%7D,其中x_%7B0%7D%3E0

即证%5Cforall%20%5Cvarepsilon%20%3E0%2C%20%5Cexists%20%5Cdelta%3E0  s.t.  %5Cforall%200%3C%5Cvert%20x-x_%7B0%7D%20%5Cvert%20%3C%5Cdelta,都有%5Cvert%20%5Clog_a%20x-%5Clog_a%20x_%7B0%7D%20%20%5Cvert%20%3C%5Cvarepsilon%20


a%3E1

x%3Ex_%7B0%7D时,

此时%5Cvert%20%5Clog_a%20x-%5Clog_a%20x_%7B0%7D%20%5Cvert%20%3C%20%5Cvarepsilon%20%5Ciff%20%5Clog_a%20%5Cfrac%7Bx%7D%7Bx_%7B0%7D%7D%20%3C%5Cvarepsilon%20%5Ciff%20%5Cfrac%7Bx%7D%7Bx_%7B0%7D%7D%3Ca%5E%5Cvarepsilon 

%5Cvert%20x-x_%7B0%7D%20%5Cvert%20%3C%20%5Cdelta%20%5Cimplies%20x%20%3C%20x_%7B0%7D%2B%5Cdelta%20%5Cimplies%20%5Cfrac%7Bx%7D%7Bx_%7B0%7D%7D%3C%5Cfrac%7Bx_%7B0%7D%2B%5Cdelta%7D%7Bx_%7B0%7D%7D

故可取%5Cdelta  s.t.  %5Cfrac%7Bx_%7B0%7D%2B%5Cdelta%7D%7Bx_%7B0%7D%7D%3Da%5E%5Cvarepsilon%20%5Ciff%20%5Cdelta%3Dx_%7B0%7D(a%5E%5Cvarepsilon-1)%20%3E0

即有%5Cvert%20%5Clog_a%20x-%5Clog_a%20x_%7B0%7D%20%20%5Cvert%20%3C%5Cvarepsilon%20


0%3Cx%3Cx_%7B0%7D时,

此时%5Cvert%20%5Clog_a%20x-%5Clog_a%20x_%7B0%7D%20%5Cvert%20%3C%20%5Cvarepsilon%20%5Ciff%20%5Clog_a%20%5Cfrac%7Bx_%7B0%7D%7D%7Bx%7D%20%3C%5Cvarepsilon%20%5Ciff%20%5Cfrac%7Bx_%7B0%7D%7D%7Bx%7D%3Ca%5E%5Cvarepsilon 

%5Cvert%20x-x_%7B0%7D%20%5Cvert%20%3C%20%5Cdelta%20%5Cimplies%20x%20%3E%20x_%7B0%7D-%5Cdelta%20%5Cimplies%20%5Cfrac%7Bx_%7B0%7D%7D%7Bx%7D%3C%5Cfrac%7Bx_%7B0%7D%7D%7Bx_%7B0%7D-%5Cdelta%7D

故可取%5Cdelta  s.t.  %5Cfrac%7Bx_%7B0%7D%7D%7Bx_%7B0%7D-%5Cdelta%7D%3Da%5E%5Cvarepsilon%20%5Ciff%20%5Cdelta%3Dx_%7B0%7D(-a%5E%7B-%5Cvarepsilon%7D%20%2B1)%20%3E0

即有%5Cvert%20%5Clog_a%20x-%5Clog_a%20x_%7B0%7D%20%20%5Cvert%20%3C%5Cvarepsilon%20


0%3Ca%3C1

x%3Ex_%7B0%7D时,

此时%5Cvert%20%5Clog_a%20x-%5Clog_a%20x_%7B0%7D%20%5Cvert%20%3C%20%5Cvarepsilon%20%5Ciff%20%5Clog_a%20%5Cfrac%7Bx_0%7D%7Bx%7D%20%3C%5Cvarepsilon%20%5Ciff%20%5Cfrac%7Bx_0%7D%7Bx%7D%3Ea%5E%5Cvarepsilon 

%5Cvert%20x-x_%7B0%7D%20%5Cvert%20%3C%20%5Cdelta%20%5Cimplies%20x%20%3C%20x_%7B0%7D%2B%5Cdelta%20%5Cimplies%20%5Cfrac%7Bx_0%7D%7Bx%7D%3E%5Cfrac%7Bx_%7B0%7D%7D%7Bx_%7B0%7D%2B%5Cdelta%7D

故可取%5Cdelta  s.t.  %5Cfrac%7Bx_%7B0%7D%7D%7Bx_%7B0%7D%2B%5Cdelta%7D%3Da%5E%5Cvarepsilon%20%5Ciff%20%5Cdelta%3Dx_%7B0%7D(a%5E%7B-%5Cvarepsilon%7D-1)%20%3E0

即有%5Cvert%20%5Clog_a%20x-%5Clog_a%20x_%7B0%7D%20%20%5Cvert%20%3C%5Cvarepsilon%20


0%3Cx%3Cx_%7B0%7D时,

此时%5Cvert%20%5Clog_a%20x-%5Clog_a%20x_%7B0%7D%20%5Cvert%20%3C%20%5Cvarepsilon%20%5Ciff%20%5Clog_a%20%5Cfrac%7Bx%7D%7Bx_0%7D%20%3C%5Cvarepsilon%20%5Ciff%20%5Cfrac%7Bx%7D%7Bx_0%7D%3Ea%5E%5Cvarepsilon 

%5Cvert%20x-x_%7B0%7D%20%5Cvert%20%3C%20%5Cdelta%20%5Cimplies%20x%20%3E%20x_%7B0%7D-%5Cdelta%20%5Cimplies%20%5Cfrac%7Bx%7D%7Bx_0%7D%3E%5Cfrac%7Bx_%7B0%7D-%5Cdelta%7D%7Bx_%7B0%7D%7D

故可取%5Cdelta  s.t.  %5Cfrac%7Bx_%7B0%7D-%5Cdelta%7D%7Bx_%7B0%7D%7D%3Da%5E%5Cvarepsilon%20%5Ciff%20%5Cdelta%3Dx_%7B0%7D(-a%5E%5Cvarepsilon%20%2B1)%20%3E0

即有%5Cvert%20%5Clog_a%20x-%5Clog_a%20x_%7B0%7D%20%20%5Cvert%20%3C%5Cvarepsilon%20


综上,f(x)%3D%5Clog_a%20x%20 (a%3E0a%5Cneq%201)(0%2C%2B%E2%88%9E)连续.


注:本证明仅为个人方法,如有雷同,纯属巧合.


如果读者有更好的方法,或者发现问题,欢迎指出!

对数函数连续性的证明的评论 (共 条)

分享到微博请遵守国家法律