欢迎光临散文网 会员登陆 & 注册

复习笔记Day107:华中科技大学2023数学分析参考答案(上)

2023-02-23 23:38 作者:间宫_卓司  | 我要投稿

之前在专栏里面说了,可能很长一段时间不会更新数分高代相关的内容了,但是复试的内容里面还有数分高代,所以我不得不花点时间复健一下数分高代,复健的方式大概就是写几套考研真题,然后再把课本和之前的笔记看一遍,然后我要侧重练习计算题,这次的高代就是吃了计算能力太差和基础不扎实的亏(我想了半天线性方程组要怎么解···)

1.求极限%5Cbegin%7Bequation%7D%0A%5Clim%20_%7Bx%20%5Crightarrow%200%7D%5Cleft(-%5Cfrac%7B%5Ccot%20x%7D%7Be%5E%7B-2%20x%7D%7D%2B%5Cfrac%7B1%7D%7Be%5E%7B-x%7D%20%5Csin%20%5E2%20x%7D-%5Cfrac%7B1%7D%7Bx%5E2%7D%5Cright)%0A%5Cend%7Bequation%7D

这题可以通过直接通分来暴力求解,不过如果注意到极限%5Cunderset%7Bx%5Crightarrow%200%7D%7B%5Clim%7D%5Cleft(%20%5Cfrac%7B1%7D%7Bx%5E2%7D-%5Cfrac%7B1%7D%7B%5Csin%20%5E2x%7D%20%5Cright)%20存在的话,可以减少计算量

%5Cbegin%7Baligned%7D%0A%09%26-%5Cfrac%7B%5Ccot%20x%7D%7Be%5E%7B-2x%7D%7D%2B%5Cfrac%7B1%7D%7Be%5E%7B-x%7D%5Csin%20%5E2x%7D-%5Cfrac%7B1%7D%7Bx%5E2%7D%5C%5C%0A%09%26%3D%5Cfrac%7B-%5Ccos%20x%5Csin%20x%7D%7B%5Csin%20%5E2x%7De%5E%7B2x%7D%2B%5Cfrac%7B1%7D%7B%5Csin%20%5E2x%7De%5Ex-%5Cfrac%7B1%7D%7Bx%5E2%7D%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B%5Csin%20%5E2x%7D%5Cleft(%20-%5Cfrac%7B1%7D%7B2%7D%5Csin%202xe%5E%7B2x%7D%2Be%5Ex-1%20%5Cright)%20%2B%5Cleft(%20%5Cfrac%7B1%7D%7B%5Csin%20%5E2x%7D-%5Cfrac%7B1%7D%7Bx%5E2%7D%20%5Cright)%5C%5C%0A%5Cend%7Baligned%7D

现在分别来计算最后一式中两项的极限,对于第一项,因为当x%5Crightarrow%200时,有

%5Csin%202xe%5E%7B2x%7D%3D%5Cleft(%202x%2Bo%5Cleft(%20x%5E2%20%5Cright)%20%5Cright)%20%5Cleft(%201%2B2x%2Bo%5Cleft(%20x%20%5Cright)%20%5Cright)%20%3D2x%2B4x%5E2%2Bo%5Cleft(%20x%5E2%20%5Cright)%20

e%5Ex-1%3Dx%2B%5Cfrac%7Bx%5E2%7D%7B2%7D%2Bo%5Cleft(%20x%5E2%20%5Cright)%20

所以

%5Cbegin%7Baligned%7D%0A%09%26-%5Cfrac%7B1%7D%7B2%7D%5Csin%202xe%5E%7B2x%7D%2Be%5Ex-1%5C%5C%0A%09%26%3D-%5Cfrac%7B1%7D%7B2%7D%5Cleft(%202x%2B4x%5E2%2Bo%5Cleft(%20x%5E2%20%5Cright)%20%5Cright)%20%2Bx%2B%5Cfrac%7Bx%5E2%7D%7B2%7D%2Bo%5Cleft(%20x%5E2%20%5Cright)%5C%5C%0A%09%26%3D-%5Cfrac%7B3%7D%7B2%7Dx%5E2%2Bo(x%5E2)%5C%5C%0A%5Cend%7Baligned%7D

从而

%5Cunderset%7Bx%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7B1%7D%7B%5Csin%20%5E2x%7D%5Cleft(%20-%5Cfrac%7B1%7D%7B2%7D%5Csin%202xe%5E%7B2x%7D%2Be%5Ex-1%20%5Cright)%20%3D%5Cunderset%7Bx%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7B1%7D%7Bx%5E2%7D%5Cleft(%20-%5Cfrac%7B3%7D%7B2%7Dx%5E2%2Bo%5Cleft(%20x%5E2%20%5Cright)%20%5Cright)%20%3D-%5Cfrac%7B3%7D%7B2%7D

对于第二项,有

%5Cbegin%7Baligned%7D%0A%09%26%5Cunderset%7Bx%5Crightarrow%200%7D%7B%5Clim%7D%5Cleft(%20%5Cfrac%7B1%7D%7B%5Csin%20%5E2x%7D-%5Cfrac%7B1%7D%7Bx%5E2%7D%20%5Cright)%5C%5C%0A%09%26%3D%5Cunderset%7Bx%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7B%5Cleft(%20x%2B%5Csin%20x%20%5Cright)%20%5Cleft(%20x-%5Csin%20x%20%5Cright)%7D%7Bx%5E2%5Csin%20%5E2x%7D%5C%5C%0A%09%26%3D%5Cunderset%7Bx%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7B%5Cleft(%20x%2Bx%2Bo%5Cleft(%20x%20%5Cright)%20%5Cright)%20%5Cleft(%20x-%5Cleft(%20x-%5Cfrac%7Bx%5E3%7D%7B6%7D%2Bo%5Cleft(%20x%5E3%20%5Cright)%20%5Cright)%20%5Cright)%7D%7Bx%5E4%7D%5C%5C%0A%09%26%3D%5Cunderset%7Bx%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7B%5Cleft(%202x%2Bo%5Cleft(%20x%20%5Cright)%20%5Cright)%20%5Cleft(%20%5Cfrac%7Bx%5E3%7D%7B6%7D%2Bo%5Cleft(%20x%5E3%20%5Cright)%20%5Cright)%7D%7Bx%5E4%7D%3D%5Cfrac%7B1%7D%7B3%7D%5C%5C%0A%5Cend%7Baligned%7D

所以%E5%8E%9F%E5%BC%8F%3D-%5Cfrac%7B3%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B3%7D%3D-%5Cfrac%7B7%7D%7B6%7D

2.计算%5Cbegin%7Bequation%7D%0A%5Cint_0%5E%7B%2B%5Cinfty%7D%20e%5E%7B-%5Cfrac%7B1%7D%7B4%20s%7D%7D%20s%5E%7B-%5Cfrac%7B3%7D%7B2%7D%7D%20e%5E%7B-s%7D%20%5Cmathrm%7B~d%7D%20s%0A%5Cend%7Bequation%7D

这题还是比较哈人的,一开始我觉得它和90.2有点像,但是好像又不太一样,经过一番尝试后,我发现通过换元法可能可以把夹在两个e中间的s消去

%5Cbegin%7Baligned%7D%0A%09%26%5Cint_0%5E%7B%2B%5Cinfty%7D%7Be%5E%7B-%5Cfrac%7B1%7D%7B4s%7D%7Ds%5E%7B-%5Cfrac%7B3%7D%7B2%7D%7De%5E%7B-s%7D%5Cxlongequal%7Bu%5E%7B%5Calpha%7D%3Ds%7D%7D%5Cint_0%5E%7B%2B%5Cinfty%7D%7Be%5E%7B-%5Cfrac%7B1%7D%7B4u%5E%7B%5Calpha%7D%7D%7Du%5E%7B-%5Cfrac%7B3%7D%7B2%7D%5Calpha%7De%5E%7B-u%5E%7B%5Calpha%7D%7D%5Calpha%20u%5E%7B%5Calpha%20-1%7D%5Cmathrm%7Bd%7Du%7D%5C%5C%0A%09%26%3D%5Calpha%20%5Cint_0%5E%7B%2B%5Cinfty%7D%7Be%5E%7B-%5Cfrac%7B1%7D%7B4u%5E%7B%5Calpha%7D%7D%7Du%5E%7B-%5Cfrac%7B1%7D%7B2%7D%5Calpha%20-1%7De%5E%7B-u%5E%7B%5Calpha%7D%7D%5Cmathrm%7Bd%7Du%7D%5C%5C%0A%5Cend%7Baligned%7D

%5Calpha%3D-2(注意上下限要互换,上面那个式子只在%5Calpha%3E0的时候是对的)

可得%5Cint_0%5E%7B%2B%5Cinfty%7D%7Be%5E%7B-%5Cfrac%7B1%7D%7B4s%7D%7Ds%5E%7B-%5Cfrac%7B3%7D%7B2%7D%7De%5E%7B-s%7D%3D%7D2%5Cint_0%5E%7B%2B%5Cinfty%7D%7Be%5E%7B-%5Cfrac%7Bu%5E2%7D%7B4%7D-%5Cfrac%7B1%7D%7Bu%5E2%7D%7D%5Cmathrm%7Bd%7Du%7D

进而

%5Cint_0%5E%7B%2B%5Cinfty%7D%7Be%5E%7B-%5Cfrac%7Bu%5E2%7D%7B4%7D-%5Cfrac%7B1%7D%7Bu%5E2%7D%7D%5Cmathrm%7Bd%7Du%7D%5Cxlongequal%7By%3D2c%7D2%5Cint_0%5E%7B%2B%5Cinfty%7D%7Be%5E%7B-y%5E2-%5Cfrac%7B1%7D%7B4y%5E2%7D%7D%5Cmathrm%7Bd%7Dy%7D

所以依90.2的结论,%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%3D2%5Ccdot%202%5Ccdot%20%5Cleft(%20%5Cfrac%7B1%7D%7B2%7D%5Csqrt%7B%5Cpi%7De%5E%7B-2%5Ccdot%20%5Cfrac%7B1%7D%7B2%7D%7D%20%5Cright)%20%3D2%5Csqrt%7B%5Cpi%7De%5E%7B-1%7D

3.判断积分%5Cbegin%7Bequation%7D%0A%5Cint_0%5E%7B2%20%5Cpi%7D%20e%5E%7B-x%5E2%7D%20%5Ccos%20x%20%5Cmathrm%7B~d%7D%20x%0A%5Cend%7Bequation%7D的正负,并证明你的结论

这题我一开始想了很长时间,用积分第二中值定理搞了半天都没有搞出来,后来我把被积函数的图像画了出来

虽然我知道e%5E%7B-x%5E2%7D收敛的很快,但是没想到这么快,所以我觉得实际上证明这个结论并不需要很精确的估计,随便估计一下就够了

所以现在先来估计%5Cint_0%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%7Be%5E%7B-x%5E2%7D%7D%5Ccos%20x%5Cmathrm%7Bd%7Dx

%5Cint_0%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%7Be%5E%7B-x%5E2%7D%5Ccos%20x%5Cmathrm%7Bd%7Dx%7D%5Cge%20%5Cint_0%5E%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%7Be%5E%7B-x%5E2%7D%5Ccos%20x%5Cmathrm%7Bd%7Dx%7D%5Cge%20%5Cfrac%7B%5Cpi%7D%7B4%7D%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7De%5E%7B-%5Cfrac%7B%5Cpi%20%5E2%7D%7B4%5E2%7D%7D%3D%5Cfrac%7B%5Cpi%20%5Csqrt%7B2%7D%7D%7B8%7De%5E%7B-%5Cfrac%7B%5Cpi%20%5E2%7D%7B16%7D%7D

再来估计%5Cint_%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%5E%7B%5Cfrac%7B3%5Cpi%7D%7B2%7D%7D%7Be%5E%7B-x%5E2%7D%5Ccos%20x%5Cmathrm%7Bd%7Dx%7D

%5Cint_%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%5E%7B%5Cfrac%7B3%5Cpi%7D%7B2%7D%7D%7Be%5E%7B-x%5E2%7D%5Ccos%20x%5Cmathrm%7Bd%7Dx%7D%5Cge%20%5Cint_%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%5E%7B%5Cfrac%7B3%5Cpi%7D%7B2%7D%7D%7Be%5E%7B-x%7D%5Ccos%20x%5Cmathrm%7Bd%7Dx%7D

%5Cleft(%20e%5E%7B-x%7D%5Ccos%20x%20%5Cright)%20'%3D-e%5E%7B-x%7D%5Csin%20x-e%5E%7B-x%7D%5Ccos%20x

所以e%5E%7B-x%7D%5Ccos%20x%5Cleft%5B%20%5Cfrac%7B%5Cpi%7D%7B2%7D%2C%5Cfrac%7B3%7D%7B2%7D%5Cpi%20%5Cright%5D%20上有最小值-%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7De%5E%7B-%5Cfrac%7B5%5Cpi%7D%7B4%7D%7D,所以

%5Cint_%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%5E%7B%5Cfrac%7B3%5Cpi%7D%7B2%7D%7D%7Be%5E%7B-x%5E2%7D%5Ccos%20x%5Cmathrm%7Bd%7Dx%7D%5Cge%20-%5Cfrac%7B%5Csqrt%7B2%7D%5Cpi%7D%7B2%7De%5E%7B-%5Cfrac%7B5%5Cpi%7D%7B4%7D%7D

做比可得

%5Cfrac%7B%5Cfrac%7B%5Cpi%20%5Csqrt%7B2%7D%7D%7B8%7De%5E%7B-%5Cfrac%7B%5Cpi%20%5E2%7D%7B16%7D%7D%7D%7B%5Cfrac%7B%5Csqrt%7B2%7D%5Cpi%7D%7B2%7De%5E%7B-%5Cfrac%7B5%5Cpi%7D%7B4%7D%7D%7D%3D%5Cfrac%7Be%5E%7B%5Cfrac%7B5%7D%7B4%7D%5Cpi%20-%5Cfrac%7B%5Cpi%20%5E2%7D%7B16%7D%7D%7D%7B4%7D%5Cge%20%5Cfrac%7Be%5E%7B%5Cfrac%7B15%7D%7B4%7D-1%7D%7D%7B4%7D%3D%5Cfrac%7Be%5E%7B%5Cfrac%7B11%7D%7B4%7D%7D%7D%7B4%7D%5Cge%20%5Cfrac%7B2%5E2%7D%7B4%7D%5Cge%201

所以

%5Cbegin%7Bequation%7D%0A%5Cint_0%5E%7B2%20%5Cpi%7D%20e%5E%7B-x%5E2%7D%20%5Ccos%20x%20%5Cmathrm%7B~d%7D%20x%5Cge%5Cint_0%5E%7B%5Cfrac%7B3%5Cpi%7D%7B2%7D%7D%7Be%5E%7B-x%5E2%7D%5Ccos%20x%5Cmathrm%7Bd%7Dx%7D%5Cge%200%0A%5Cend%7Bequation%7D

4.设%5Cbegin%7Bequation%7D%0AI%5Cleft(x_0%2C%20x_1%5Cright)%3D%5Ciint_%7B%5CSigma%7D%20%5Cfrac%7Be%5E%7B-x%5E%5Calpha%7D%7D%7B%5Csqrt%7By%5E2%2Bz%5E2%7D%7D%20%5Cmathrm%7B~d%7D%20y%20%5Cmathrm%7B~d%7D%20z%0A%5Cend%7Bequation%7D,其中%5CSigma为抛物面x%3Dy%5E2%2Bz%5E2与平面x%3Dx_0%2Cx%3Dx_1所围立体表面的内侧,%5Calpha%3E0x_1%3Ex_0%3E0,求极限

%5Cunderset%7B%5Cbegin%7Barray%7D%7Bc%7D%0A%09x_0%5Crightarrow%200%5C%5C%0A%09x_1%5Crightarrow%20%2B%5Cinfty%5C%5C%0A%5Cend%7Barray%7D%7D%7B%5Clim%7DI%5Cleft(%20x_0%2Cx_1%20%5Cright)%20

做换元y%3Dr%5Ccos%20%5Ctheta%20%2Cz%3Dr%5Csin%20%5Ctheta%20%2Cx%3Dr%5E2,可得

I%5Cleft(%20x_0%2Cx_1%20%5Cright)%20%3D%5Cint_0%5E%7B2%5Cpi%7D%7B%5Cmathrm%7Bd%7D%5Ctheta%20%5Cint_%7B%5Csqrt%7Bx_0%7D%7D%5E%7B%5Csqrt%7Bx_1%7D%7D%7Be%5E%7B-r%5E%7B2%5Calpha%7D%7D%5Cmathrm%7Bd%7Dr%7D%7D

那么

%5Cunderset%7B%5Cbegin%7Barray%7D%7Bc%7D%0A%09x_0%5Crightarrow%200%5C%5C%0A%09x_1%5Crightarrow%20%2B%5Cinfty%5C%5C%0A%5Cend%7Barray%7D%7D%7B%5Clim%7DI%5Cleft(%20x_0%2Cx_1%20%5Cright)%20%3D2%5Cpi%20%5Cint_0%5E%7B%2B%5Cinfty%7D%7Be%5E%7B-r%5E%7B2%5Calpha%7D%7D%5Cmathrm%7Bd%7Dr%7D%5Cxlongequal%7Br%5E%7B2%5Calpha%7D%3Dx%7D2%5Cpi%20%5Cint_0%5E%7B%2B%5Cinfty%7D%7B%5Cfrac%7B1%7D%7B2%5Calpha%7Dx%5E%7B%5Cfrac%7B1%7D%7B2%5Calpha%7D-1%7De%5E%7B-x%7D%5Cmathrm%7Bd%7Dx%7D%3D%5Cfrac%7B%5Cpi%7D%7B%5Calpha%7D%5CGamma%20%5Cleft(%20%5Cfrac%7B1%7D%7B2%5Calpha%7D%20%5Cright)%20

5.(1)证明:方程%5Cbegin%7Bequation%7D%0A(x%2B1)%5E%7Bx%2B1%7D%3De%20x%5Ex%0A%5Cend%7Bequation%7D有唯一正根

(x%2B1)%5E%7Bx%2B1%7D%3Dex%5Ex%5CLeftrightarrow%20e%5E%7B%5Cleft(%20x%2B1%20%5Cright)%20%5Cln%20%5Cleft(%20x%2B1%20%5Cright)%7D%3De%5E%7Bx%5Cln%20x%2B1%7D%5CLeftrightarrow%20e%5E%7B%5Cleft(%20x%2B1%20%5Cright)%20%5Cln%20%5Cleft(%20x%2B1%20%5Cright)%20-x%5Cln%20x-1%7D%3D1

所以只要证明f%5Cleft(%20x%20%5Cright)%20%3D%5Cleft(%20x%2B1%20%5Cright)%20%5Cln%20%5Cleft(%20x%2B1%20%5Cright)%20-x%5Cln%20x-1有唯一正根就好了,而

f'%5Cleft(%20x%20%5Cright)%20%3D%5Cln%20%5Cleft(%20%5Cfrac%7Bx%2B1%7D%7Bx%7D%20%5Cright)%20%3E0

所以f(x)是单调递增的,进而f(0%5E%2B)%3D-1%3C0f(1)%3D%5Cln4-1%3E0,所以有唯一正根

(2)设p(x)%3Dx-x%5E2f(x)是二阶连续可微函数,证明对任意非负整数k,成立

%5Cbegin%7Bequation%7D%0A%5Cint_k%5E%7Bk%2B1%7D%20f(x)%20%5Cmathrm%7Bd%7D%20x%3D%5Cfrac%7Bf(k%2B1)%2Bf(k)%7D%7B2%7D-%5Cfrac%7B1%7D%7B2%7D%20%5Cint_k%5E%7Bk%2B1%7D%20f%5E%7B%5Cprime%20%5Cprime%7D(x)%20p(x-%5Bx%5D)%20%5Cmathrm%7Bd%7D%20x%0A%5Cend%7Bequation%7D

这题考察的是欧拉-麦克劳林公式,谢惠民上面就有,一开始看到取整函数的时候可能会被吓到,但是只需要注意到

%5Cint_k%5E%7Bk%2B1%7D%7Bf''%7D(x)p(x-%5Bx%5D)%5Cmathrm%7Bd%7Dx%3D%5Cint_k%5E%7Bk%2B1%7D%7Bf''%7D(x)p(x-k)%5Cmathrm%7Bd%7Dx

也就没那么吓人了

%5Cbegin%7Baligned%7D%0A%09%26%5Cint_k%5E%7Bk%2B1%7D%7Bf%5Cleft(%20x%20%5Cright)%20%5Cmathrm%7Bd%7Dx%7D%3D%5Cint_k%5E%7Bk%2B1%7D%7Bf%5Cleft(%20x%20%5Cright)%20%5Cmathrm%7Bd%7D%5Cleft(%20x-k-%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%7D%5C%5C%0A%09%26%3D%5Cfrac%7Bf%5Cleft(%20k%2B1%20%5Cright)%20%2Bf%5Cleft(%20k%20%5Cright)%7D%7B2%7D-%5Cint_k%5E%7Bk%2B1%7D%7B%5Cleft(%20x-k-%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%20f'%5Cleft(%20x%20%5Cright)%20%5Cmathrm%7Bd%7Dx%7D%5C%5C%0A%5Cend%7Baligned%7D

再次使用第一行的技巧,可得

%5Cbegin%7Baligned%7D%0A%09%26%5Cint_k%5E%7Bk%2B1%7D%7B%5Cleft(%20x-k-%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%20f'%5Cleft(%20x%20%5Cright)%20%5Cmathrm%7Bd%7Dx%7D%3D%5Cint_k%5E%7Bk%2B1%7D%7Bf'%5Cleft(%20x%20%5Cright)%20%5Cmathrm%7Bd%7D%5Cfrac%7B1%7D%7B2%7D%5Cleft(%20x-k-%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%20%5E2%7D%5C%5C%0A%09%26%3D%5Cint_k%5E%7Bk%2B1%7D%7Bf'%5Cleft(%20x%20%5Cright)%20%5Cmathrm%7Bd%7D%5Cfrac%7B1%7D%7B2%7D%5Cleft(%20x-k%20%5Cright)%20%5Cleft(%20x-k-1%20%5Cright)%7D%5C%5C%0A%09%26%3D%5Cint_k%5E%7Bk%2B1%7D%7Bf''%5Cleft(%20x%20%5Cright)%20%5Cfrac%7B1%7D%7B2%7D%5Cleft(%20x-k%20%5Cright)%20%5Cleft(%20x-k-1%20%5Cright)%20%5Cmathrm%7Bd%7Dx%7D%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B2%7D%5Cint_k%5E%7Bk%2B1%7D%7Bf''%5Cleft(%20x%20%5Cright)%20p%5Cleft(%20x-k%20%5Cright)%20%5Cmathrm%7Bd%7Dx%7D%5C%5C%0A%5Cend%7Baligned%7D

这就证明了结论

(3)计算极限%5Cbegin%7Bequation%7D%0A%5Clim%20_%7Bn%20%5Crightarrow%20%5Cinfty%7D%5Cleft(%5Cbeta%2B%5Cfrac%7B1%7D%7Bn%7D%5Cright)%5Cleft(%5Cbeta%2B%5Cfrac%7B2%7D%7Bn%7D%5Cright)%20%5Ccdots%5Cleft(%5Cbeta%2B%5Cfrac%7Bn%7D%7Bn%7D%5Cright)%0A%5Cend%7Bequation%7D

没有想法,甚至怀疑是题目记错了,凑不出定积分的形式

6.(1)对任意的x%3E0%2Cy%5Cin%5Cmathbb%7BR%7D,证明:%5Cbegin%7Bequation%7D%0Ax%20y%20%5Cleq%20x%20%5Cln%20x-x%2Be%5Ey%0A%5Cend%7Bequation%7D

这题好像是陈纪修上面的例题

g%5Cleft(%20y%20%5Cright)%20%3Dxy-x%5Cln%20x%2Bx-e%5Ey,则g'%5Cleft(%20y%20%5Cright)%20%3Dx-e%5Ey,故g(y)y%3D%5Cln%20x处取最大值,即g%5Cleft(%20y%20%5Cright)%20%5Cle%20g%5Cleft(%20%5Cln%20x%20%5Cright)%20%3D0

(2)设%5Calpha%2C%5Cbeta是任意非零实数,对正整数n,证明:

%5Cbegin%7Bequation%7D%0A%5Csum_%7Bk%3D0%7D%5En%5Cleft(%5Cbegin%7Barray%7D%7Bc%7D%0A%5Calpha%20%5C%5C%0Ak%0A%5Cend%7Barray%7D%5Cright)%5Cleft(%5Cbegin%7Barray%7D%7Bc%7D%0A%5Cbeta%20%5C%5C%0An-k%0A%5Cend%7Barray%7D%5Cright)%3D%5Cleft(%5Cbegin%7Barray%7D%7Bc%7D%0A%5Calpha%2B%5Cbeta%20%5C%5C%0An%0A%5Cend%7Barray%7D%5Cright)%20%0A%5Cend%7Bequation%7D

其中

%5Cleft(%5Cbegin%7Barray%7D%7Bc%7D%0A%5Calpha%20%5C%5C%0Ak%0A%5Cend%7Barray%7D%5Cright)%3D%5Cfrac%7B%5Calpha(%5Calpha-1)%20%5Ccdots(%5Calpha-k%2B1)%7D%7Bk%20!%7D%2C%5Cleft(%5Cbegin%7Barray%7D%7Bl%7D%0A%5Calpha%20%5C%5C%0A0%0A%5Cend%7Barray%7D%5Cright)%3D1

这题是史济怀上面的例题,一方面,在收敛范围内,有

%5Cleft(%201%2Bx%20%5Cright)%20%5E%7B%5Calpha%20%2B%5Cbeta%7D%3D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%7B%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Calpha%20%2B%5Cbeta%5C%5C%0A%09n%5C%5C%0A%5Cend%7Barray%7D%20%5Cright)%7Dx%5En

另一方面,有

%5Cbegin%7Baligned%7D%0A%09%26%5Cleft(%201%2Bx%20%5Cright)%20%5E%7B%5Calpha%20%2B%5Cbeta%7D%3D%5Cleft(%201%2Bx%20%5Cright)%20%5E%7B%5Calpha%7D%5Cleft(%201%2Bx%20%5Cright)%20%5E%7B%5Cbeta%7D%5C%5C%0A%09%26%3D%5Cleft(%20%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%7B%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Calpha%5C%5C%0A%09n%5C%5C%0A%5Cend%7Barray%7D%20%5Cright)%20x%5En%7D%20%5Cright)%20%5Cleft(%20%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%7B%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Cbeta%5C%5C%0A%09n%5C%5C%0A%5Cend%7Barray%7D%20%5Cright)%20x%5En%7D%20%5Cright)%5C%5C%0A%09%26%3D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%7B%5Cleft(%20%5Csum_%7Bn%3D0%7D%5En%7B%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Calpha%5C%5C%0A%09k%5C%5C%0A%5Cend%7Barray%7D%20%5Cright)%20%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Cbeta%5C%5C%0A%09n-k%5C%5C%0A%5Cend%7Barray%7D%20%5Cright)%7D%20%5Cright)%7D%5C%5C%0A%5Cend%7Baligned%7D

这说明了%5Cbegin%7Bequation%7D%0A%5Csum_%7Bk%3D0%7D%5En%5Cleft(%5Cbegin%7Barray%7D%7Bc%7D%0A%5Calpha%20%5C%5C%0Ak%0A%5Cend%7Barray%7D%5Cright)%5Cleft(%5Cbegin%7Barray%7D%7Bc%7D%0A%5Cbeta%20%5C%5C%0An-k%0A%5Cend%7Barray%7D%5Cright)%3D%5Cleft(%5Cbegin%7Barray%7D%7Bc%7D%0A%5Calpha%2B%5Cbeta%20%5C%5C%0An%0A%5Cend%7Barray%7D%5Cright)%20%0A%5Cend%7Bequation%7D

因为b站的专栏一个只能放100张图片,而一个公式算一张图片,所以剩下的题目只能放到下去了






复习笔记Day107:华中科技大学2023数学分析参考答案(上)的评论 (共 条)

分享到微博请遵守国家法律