欢迎光临散文网 会员登陆 & 注册

常微分方程笔记(四)

2023-03-17 00:08 作者:啊啊啊每当想起你  | 我要投稿

前言:本节开始介绍新的一章——一阶微分方程的解的存在定理

    之前学习解法的时候都是习惯性的拿到一个微分方程就开始套各种解法,因为初学时所给的微分方程都是可用初等解法解出的,但是如果是像Riccati方程难以用初等解法来解决的,那是不是意味着无解呢?因此本章内容就是给出一些判据来确定一个一阶微分方程是否有解,以及在实际问题中,如果有难以解出的方程,可用近似法求其数值解.


3.1 解的存在唯一性定理与逐步逼近法

3.1.1存在唯一性定理

3.1.1.1Lipschitz条件

    定义:首先考虑导数已解出的一阶微分方程

    %5Cfrac%7Bdy%7D%7Bdx%7D%3Df(x%2Cy)                                                                                                         (3.1)

这里f(x,y)是在矩形域

    R%3A%7Cx-x_0%7C%20%5Cleq%20a%2C%7Cy-y_0%7C%20%5Cleq%20b                                                                          

上的连续函数

    函数f(x,y)称为在R上关于y满足Lipschitz条件,如果存在常数L>0,使得不等式

    %7Cf(x%2Cy_1)-f(x%2Cy_2)%7C%20%5Cleq%20L%20%7Cy_1-y_2%7C

    对于所有的(x%2Cy_1)%2C(x%2Cy_2)%5Cin%20R都成立.这里L称为Lipschitz常数.

    定理1(存在唯一定理,Picard定理):如果f(x,y)在矩形域R上连续且关于y满足Lipschitz条件(以下简写为Lips.条件),则方程(3.1)存在唯一的解y%3D%CF%86(x),定义于%7Cx-x_0%7C%5Cleq%20h上,连续且满足初值条件

    y_0%3D%CF%86(x_0)                                                                                                             (3.2)

这里h%3Dmin%0A%5Cleft(%5C%0Aa%2C%5Cfrac%7Bb%7D%7BM%7D%0A%5Cright)%5C%0A%2CM%3D%5Cmin%5Climits_%7B(x%2Cy)%5Cleq%20R%7D%7Cf(x%2Cy)%7C.

(P.S. 初值问题(3.1)(3.2)也被称为Cauchy问题.)

3.1.1.2 Picard定理的证明——逐步逼近法

    求微分方程初值问题的解等价于求积分方程

    y%20%3D%20y_0%20%2B%20%5Cint%5E%7Bx%7D_%7Bx_0%7Df(x%2Cy)dx                                                                                        (3.3)

的连续解.

    任取一个连续函数%5Cvarphi%20_0(x)代入(3.3)式右端的y,就得到

     %5Cvarphi%20_1(x)%20%3D%20y_0%20%2B%20%5Cint%5E%7Bx%7D_%7Bx_0%7Df(x%2C%5Cvarphi%20_0(x))dx     

显然%5Cvarphi%20_1(x)也是连续函数,如果%5Cvarphi%20_1(x)%20%3D%20%5Cvarphi%20_0(x),那么%5Cvarphi%20_0(x)就是积分方程的解.否则将%5Cvarphi%20_1(x)代入(3.3)式右端得

     %5Cvarphi%20_2(x)%20%3D%20y_0%20%2B%20%5Cint%5E%7Bx%7D_%7Bx_0%7Df(x%2C%5Cvarphi%20_1(x))dx

如果%5Cvarphi%20_2(x)%20%3D%20%5Cvarphi%20_1(x),那么%5Cvarphi%20_1(x)就是积分方程的解.否则继续此步骤.如果这个步骤是有限次的,那么可以用一个流程图来表示上述步骤:

    

上述步骤的流程图(画的不太严谨)

如此下去可以得到一个连续函数序列%5C%7B%5Cvarphi%20_n(x)%5C%7D,其中

    %5Cvarphi%20_n(x)%20%3D%20y_0%20%2B%20%5Cint%5E%7Bx%7D_%7Bx_0%7Df(x%2C%5Cvarphi%20_%7Bn-1%7D(x))dx                                                                 (3.4)

如果始终不发生这种情况,那么上述函数列有一个极限函数%5Cvarphi%20(x),即

    %5Clim_%7Bn%5Cto%5Cinfty%7D%20%5Cvarphi%20_n(x)%20%3D%20%5Cvarphi%20(x)%20

存在,对(3.4)式两边取极限得

   %5Clim_%7Bn%5Cto%5Cinfty%7D%20%5Cvarphi%20_n(x)%20%3D%20%5Cvarphi%20(x)%20%0A%3D%20y_0%20%2B%20%5Clim_%7Bn%5Cto%5Cinfty%7D%20%20%20%5Cint%5E%7Bx%7D_%7Bx_0%7Df(x%2C%5Cvarphi%20_%7Bn-1%7D(x))dx

%3D%20y_0%20%2B%20%20%5Cint%5E%7Bx%7D_%7Bx_0%7D%20%5Clim_%7Bn%5Cto%5Cinfty%7D%20f(x%2C%5Cvarphi%20_%7Bn-1%7D(x))dx%0A

%3D%20y_0%20%2B%20%20%5Cint%5E%7Bx%7D_%7Bx_0%7D%20f(x%2C%5Cvarphi%20(x))dx

即: %5Cvarphi%20(x)%20%3D%20y_0%20%2B%20%5Cint%5E%7Bx%7D_%7Bx_0%7Df(x%2C%5Cvarphi%20(x))dx.这就是说%5Cvarphi%20(x)是积分方程的解,这种一步步地求出解的方法就称为逐步逼近法.由(3.4)确定的函数%7C%5Cvarphi_n(x)-y_0%20%20%7C%20%5Cleq%20b称为初值问题(3.1)(3.2)的第n次近似解.

3.1.1.3 存在唯一性定理的证明

    书中给了五个命题来证明此定理:

    命题1 设y%20%3D%20%5Cvarphi%20(x)是方程(3.1)的定义于%5Bx_0%2C%20x_0%20%2Bh%5D上且满足初值条件%5Cvarphi%20(x_0)%3Dy_0的解,则y%20%3D%20%5Cvarphi%20(x)是积分方程(3.3)定义于%5Bx_0%2C%20x_0%20%2Bh%5D上的连续解,反之亦然.

    命题2需要用到Picard序列:

    %5Cbegin%7Bcases%7D%0A%5Cvarphi%20_0(x)%20%3D%20y_0%5C%5C%0A%5Cvarphi%20_n(x)%20%3D%20y_0%20%2B%20%5Cint%5E%7Bx%7D_%7Bx_0%7Df(%5Cxi%2C%5Cvarphi_%7Bn-1%7D(%5Cxi))d%5Cxi%0A%2Cx_0%5Cleq%20x%20%5Cleq%20x_0%2Bh(n%3D1%2C2%2C...)%0A%5Cend%7Bcases%7D  (3.5)

    命题2 对所有的n,(3.5)中的函数%5Cvarphi%20_n(x)%5Bx_0%2C%20x_0%20%2Bh%5D上有定义、连续且满足不等式

    %7C%5Cvarphi%20_n(x)-y_0%7C%20%5Cleq%20b                                                                                                    (3.6)

    命题3 函数序列%5C%7B%5Cvarphi%20_n(x)%5C%7D%5Bx_0%2C%20x_0%20%2Bh%5D上一致收敛.

    命题4 %5Cvarphi%20(x)是积分方程(3.3)定义于%5Bx_0%2C%20x_0%20%2Bh%5D上的连续解.

    命题5(唯一性) %5Cpsi%20(x)是积分方程(3.3)定义于%5Bx_0%2C%20x_0%20%2Bh%5D上的另一个连续解,则有%5Cvarphi(x)%20%3D%20%5Cpsi%20(x)(x_0%20%5Cleq%20x%20%5Cleq%20x_0%20%2B%20h).

3.1.1.4 一阶隐式方程的存在唯一性定理

    考虑一阶隐式方程:F(x%2Cy%2Cy')%3D0                                                                       (3.7)

    如果点(x_0%2Cy_0%2Cy'_0)在某一领域中,

    1° F(x%2Cy%2Cy')对所有变元(x%2Cy%2Cy')连续,且存在连续偏导数;

    2° (x_0%2Cy_0%2Cy'_0)

    3° %5Cfrac%20%7B%5Cpartial%20F(x_0%2Cy_0%2Cy'_0)%7D%7B%5Cpartial%20y'%7D%20%5Cneq%200

    则方程(3.7)存在唯一解 y%3Dy(x)%2C%7Cx-x_0%7C%20%5Cleq%20h(h为足够小的正数)满足初值条件

    y(x_0)%20%3D%20y_0,  y%E2%80%99(x_0)%20%3D%20y%E2%80%99_0.

(P.S. 在北大柳彬老师编著的ODE教材中,提到了关于Cauchy问题(3.1)(3.2)的解的唯一性,有条件比Picard定理条件更弱一些的结论,即虽然不满足Lips.条件,但满足下面这个Osgood条件:

    设函数f(x,y)在区域G连续.如果对于任意的(x%2Cy_1)%2C(x%2Cy_2)%5Cin%20G,有

    %7Cf(x%2Cy_1)-f(x%2Cy_2)%7C%20%5Cleq%20F%20%7Cy_1-y_2%7C                                                                    (3.8)

其中F(r)%3E0r(r%3E0)的连续函数,且

    %5Cint%5Ex_%7Bx_0%7D%20%5Cfrac%7B1%7D%7BF(r)%7Ddr%3D%2B%5Cinfty%2C%5Cforall%20%5Cvarepsilon%20%3E0                                                                                (3.9)

则称f(x,y)对y满足Osgood条件.

    Osgood证明了如下结果:

    Osgood定理:设函数f(x,y)在闭区域D内对y满足Osgood条件,则对于任意的(x%2C%5Cvarphi(x)),关于Cauchy问题(3.1)(3.2)的解都是存在且唯一的.

    关于Osgood定理中的存在性结论则由Peano定理保证:

    Peano定理: 假设函数f(x,y)在闭区域D%3A%7Cx-x_0%7C%20%5Cleq%20a%2C%20%7Cy-y_0%7C%20%5Cleq%20b上连续,则Cauchy问题(3.1)(3.2)在区间%7Cx-x_0%7C%20%5Cleq%20h上至少有一个解,其中h%3Dmin%0A%5Cleft(%5C%0Aa%2C%5Cfrac%7Bb%7D%7BM%7D%0A%5Cright)%5C%0A%2CM%3D%5Cmin%5Climits_%7B(x%2Cy)%5Cleq%20R%7D%7Cf(x%2Cy)%7C.)

3.1.2 近似计算与误差估计

    由下面的引理可估计%5Cvarphi%20_n(x)趋向于%5Cvarphi%20(x)的速度.

    引理1 对于Cauchy问题(3.1)(3.2),当%5Bx_0%2C%20x_0%20%2Bh%5D时有

    %7C%5Cvarphi%20_n(x)-%5Cvarphi%20(x)%7C%20%5Cleq%20%5Cfrac%7BML%5En%7D%7B(n%2B1)!%7D%20(x-x_0)%20%5E%7Bn%2B1%7D                                                       (3.10)


3.2 解的延拓和解对初值的连续性与可微性

3.2.1 解的延拓定理

    解的延拓定理:如果方程(3.1)右端的函数f(x,y)在有界区域G中连续,且在G内关于y满足局部的Lips.条件,那么方程(3.1)通过G内任何一点(x_0%2Cy_0)%20%5Cin%20G的解y%20%3D%20%5Cvarphi%20(x)可以延拓,直到点(x%2C%5Cvarphi(x))任意接近G的边界.以向x增大的一方延拓来说,如果y%20%3D%20%5Cvarphi%20(x)只能延拓到区间%5Bx_0%2C%20d)上,则当x%20%5Cto%20d时,(x%2C%5Cvarphi(x))趋于G的边界.

    推论:如果G时无界区域,在上面解的延拓定理的条件下,方程(3.1)的通过点(x_0%2Cy_0)%20的解可以延拓,以向x增大的一方的延拓来说,有下面两种情况:

    (1)解y%20%3D%20%5Cvarphi%20(x)可以延拓到区间%5Bx_0%2C%20%2B%5Cinfty)

    (2)解y%20%3D%20%5Cvarphi%20(x)只能延拓到区间%5Bx_0%2C%20d)上,其中d为有限数,则当x%20%5Cto%20d时,或者y%20%3D%20%5Cvarphi%20(x)无界,或者(x%2C%5Cvarphi(x))趋于G的边界.

3.2.1 解对初值的连续性与可微性

    如果初值(x_0%2Cy_0)%20变动,则解可以看作三个变元的函数y%20%3D%20%5Cvarphi%20(x%2C%20x_0%2C%20y_0),它满足y_0%20%3D%20%5Cvarphi%20(x_0%2C%20x_0%2C%20y_0)

    解对初值的连续性定理:如果函数f(x,y)在区域G中连续,且关于y满足局部的Lips.条件,那么方程(3.1)的解y%20%3D%20%5Cvarphi%20(x%2C%20x_0%2C%20y_0)作为x%2C%20x_0%2C%20y_0的函数在它的存在范围内是连续的.

    解对初值的可微性定理:如果函数f(x,y)以及%5Cfrac%20%7B%5Cpartial%20f%7D%7B%5Cpartial%20y%7D在区域G中连续,那么方程(3.1)的解y%20%3D%20%5Cvarphi%20(x%2C%20x_0%2C%20y_0)作为x%2C%20x_0%2C%20y_0的函数在它的存在范围内是连续可微的.其解对初值x_0%2Cy_0的微分公式为:

    %5Cfrac%20%7B%5Cpartial%20%5Cvarphi%7D%7B%5Cpartial%20x_0%7D%20%3D%20%0A-f(x_0%2Cy_0)%20%5Cexp%20%5Cbigg(%20%5Cint%5Ex_%7Bx_0%7D%0A%5Cfrac%20%7B%5Cpartial%20f(x%2C%5Cvarphi)%7D%7B%5Cpartial%20y%7Ddx%20%5Cbigg)                                                (3.11)

    %5Cfrac%20%7B%5Cpartial%20%5Cvarphi%7D%7B%5Cpartial%20y_0%7D%20%3D%20%0A%5Cexp%20%5Cbigg(%20%5Cint%5Ex_%7Bx_0%7D%0A%5Cfrac%20%7B%5Cpartial%20f(x%2C%5Cvarphi)%7D%7B%5Cpartial%20y%7Ddx%20%5Cbigg)                                                                     (3.12)

    

(P.S.S. 虽然实际上也就到这里,后面的奇解和数值解不会考,但是也值得一读,有空会补上这一段,尤其是微分方程数值解法——Euler法和Runge-Kutta法在数值分析中会考到

    P.S.S.S 北大版将这一部分拆成了两章:第三章存在唯一性定理,包含存在唯一性定理、解延拓定理、奇解与包络,以及王书中没有的比较定理;第四章解对初值的连续性与可微性,包含了高阶微分方程的概念和解对初值的连续性与可微性及其证明,而王书则把前者放到了第四章,后者放到了第三章,证明则放到了附录,证明也值得一读.)







常微分方程笔记(四)的评论 (共 条)

分享到微博请遵守国家法律