欢迎光临散文网 会员登陆 & 注册

数学物理方法公式(9):Poisson方程与Laplace方程的Green函数解法

2023-03-21 23:54 作者:打电动的阿伟嘻嘻嘻  | 我要投稿

电磁场中:%5Cboldsymbol%7BE%7D%3D-%5Cnabla%20u%2C%20%5C%20%5Cnabla%5Ccdot%20%5Cboldsymbol%7BE%7D%3D%5Cfrac%7B%5Crho%7D%7B%5Cepsilon%7D.

有源的场方程称为Poisson方程 %20%5Cnabla%5E2%20u%3D-%5Cfrac%7B%5Crho%7D%7B%5Cepsilon%7D.

无源的场方程称为Laplace方程 %20%5Cnabla%5E2%20u%3D0.

源场方程的解可以用格林函数积分表示:

u(x)%3D%5Cint%5E%7B%5Cinfty%7D_%7B-%5Cinfty%7D%5Cphi(%5Cxi)G(%5Cxi%2Cx)d%5Cxi%2C 

%E5%85%B6%E4%B8%ADG(%5Cxi%2Cx)%E6%98%AF%5Cxi%E7%82%B9%E7%9A%84%E6%BA%90%E5%9C%A8x%E7%82%B9%E4%BA%A7%E7%94%9F%E7%9A%84%E5%9C%BA%E5%88%86%E5%B8%83%E7%9A%84%E6%A0%BC%E6%9E%97%E5%87%BD%E6%95%B0%2C%5C%20%5Cphi(%5Cxi)%E6%98%AF%5Cxi%E7%82%B9%E7%9A%84%E6%BA%90%E5%88%86%E5%B8%83%E5%87%BD%E6%95%B0.考虑一般的Poisson方程与Green函数满足的方程

%5Cnabla%5E2%20u(%5Cboldsymbol%7Br%7D)%3D-f(%5Cboldsymbol%7Br%7D)%2C%5C%20%5Cnabla%5E2G%3D-%5Cdelta(%5Cboldsymbol%7Br%7D-%5Cboldsymbol%7Br%5E%7B%5Cprime%7D%7D).

利用Green公式 %5Ciint_%7BD%7D(u%5Cnabla%5E2%20v-v%5Cnabla%5E2%20u)d%20%5Csigma%3D%5Cint_%7BC%7D(u%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20n%7D-v%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20n%7D)dl.

可以得到Poisson方程的通解

u(%5Cboldsymbol%7Br%7D)%3D%5Ciiint_%7B%5COmega%7DG(%5Cboldsymbol%7Br%7D%2C%5Cboldsymbol%7Br_0%7D)f(%5Cboldsymbol%7Br_0%7D)dV_0%2B%5Ciint_%7B%5CGamma%7D%5BG(%5Cboldsymbol%7Br%7D%2C%5Cboldsymbol%7Br_0%7D)%5Cfrac%7B%5Cpartial%20u(%5Cboldsymbol%7Br_0%7D)%7D%7B%5Cpartial%20n_0%7D-u(%5Cboldsymbol%7Br_0%7D)%5Cfrac%7B%5Cpartial%20G(%5Cboldsymbol%7Br%7D%2C%5Cboldsymbol%7Br_0%7D)%7D%7B%5Cpartial%20n_0%7D%5DdS_0.

在具体例子中,取不同的边值条件及初值条件得到不同的物理结果.

数学物理方法公式(9):Poisson方程与Laplace方程的Green函数解法的评论 (共 条)

分享到微博请遵守国家法律