欢迎光临散文网 会员登陆 & 注册

(圆锥曲线)两点式的变换

2022-08-08 13:30 作者:因恋相思久  | 我要投稿


在圆锥曲线里有一种特殊的曲线,玩法多样,二次结论多而精--抛物线

例如:抛物线y%5E2%20%3D2px与直线交于AB两点

设A(%5Cfrac%7By_%7B1%7D%5E2%20%7D%7B2p%7D%20%20%EF%BC%8Cy_%7B1%7D%20)B(%5Cfrac%7By_%7B2%7D%5E2%20%7D%7B2p%7D%20%EF%BC%8C%20y_%7B2%7D%20)由两点式可得直线AB

y-y_%7B1%7D%20%3D%5Cfrac%7By_%7B1%7D-%20y_%7B2%7D%20%7D%7B%5Cfrac%7By_%7B1%7D%5E2%20%7D%7B2p%7D%20%20-%5Cfrac%7By_%7B2%7D%5E2%20%7D%7B2p%7D%20%20%20%20%7D%20%EF%BC%88x-%5Cfrac%7By_%7B1%7D%5E2%20%7D%7B2p%7D%20%EF%BC%89

y-y_%7B1%7D%20%3D%5Cfrac%7B2p%EF%BC%88y_%7B1%7D%20-y_%7B2%7D%20%EF%BC%89%7D%7B%EF%BC%88y_%7B1%7D%20%2By_%7B2%7D%20%EF%BC%89%EF%BC%88y_%7B1%7D-%20y_%7B2%7D%20%EF%BC%89%7D%20%EF%BC%88x-%5Cfrac%7By_%7B1%7D%5E2%20%7D%7B2p%7D%20%EF%BC%89

%EF%BC%88y-y_%7B1%7D%20%EF%BC%89%EF%BC%88y_%7B1%7D%2B%20y_%7B2%7D%20%EF%BC%89%3D2px-y_%7B1%7D%5E2

%EF%BC%88y_%7B1%7D%2B%20y_%7B2%7D%20%EF%BC%89y%3D2px%2By_%7B1%7D%20y_%7B2%7D%20

下面利用该直线解决特殊的问题

已知抛物线y%5E2%20%3D2px的焦点F%EF%BC%882%2C0%EF%BC%89

(1)求抛物线方程

(2)如图1,若A,B,C,D是抛物线上互不重合的四点,直线AC与直线BD交于P%EF%BC%883%2C0%EF%BC%89,直线AB过焦点F,则直线CD是否过定点,若存在,求出定点,若不存在,说明理由

图1

(1)抛物线的焦点F%EF%BC%882%2C0%EF%BC%89

所以%5Cfrac%7Bp%7D%7B2%7D%20%3D2

p%3D4

抛物线的方程为y%5E2%3D8x

(2)设A(%5Cfrac%7By_%7B1%7D%5E2%20%7D%7B8%7D%20%20%2Cy_%7B1%7D%20)%2CB(%5Cfrac%7By_%7B2%7D%5E2%20%7D%7B8%7D%20%2C%20y_%7B2%7D%20)%2CC(%5Cfrac%7By_%7B3%7D%5E2%20%7D%7B8%7D%20%2C%20y_%7B3%7D%20)%2CD(%5Cfrac%7By_%7B4%7D%5E2%20%7D%7B8%7D%20%2Cy_%7B4%7D%20%20)

当斜率存在时,直线AB为y-y_%7B1%7D%20%3D%5Cfrac%7By_%7B1%7D-%20y_%7B2%7D%20%7D%7B%5Cfrac%7By_%7B1%7D%5E2%20%7D%7B8%7D%20%20-%5Cfrac%7By_%7B2%7D%5E2%20%7D%7B8%7D%20%20%20%20%7D%20%EF%BC%88x-%5Cfrac%7By_%7B1%7D%5E2%20%7D%7B8%7D%20%EF%BC%89

%E7%9B%B4%E7%BA%BFAB%3A%EF%BC%88y_%7B1%7D%2B%20y_%7B2%7D%20%EF%BC%89y%3D8x%2By_%7B1%7D%20y_%7B2%7D%20

同理得直线AC:%EF%BC%88y_%7B1%7D%2B%20y_%7B3%7D%20%EF%BC%89y%3D8x%2By_%7B1%7D%20y_%7B3%7D%20

直线BD:%EF%BC%88y_%7B2%7D%2B%20y_%7B4%7D%20%EF%BC%89y%3D8x%2By_%7B2%7D%20y_%7B4%7D%20

直线CD:%EF%BC%88y_%7B3%7D%2B%20y_%7B4%7D%20%EF%BC%89y%3D8x%2By_%7B3%7D%20y_%7B4%7D%20

因为直线AB过F%EF%BC%882%2C0%EF%BC%89y_%7B1%7D%20y_%7B2%7D%20%3D-16

直线AC,BD过P%EF%BC%883%2C0%EF%BC%89y_%7B1%7D%20y_%7B3%7D%20%3D-24y_%7B2%7D%20y_%7B4%7D%20%3D-24

因此y_%7B3%7D%20y_%7B4%7D%20%3D-36

所以%EF%BC%88y_%7B3%7D%2B%20y_%7B4%7D%20%EF%BC%89y%3D8x-36过定点%5Cvarphi%20%EF%BC%88%5Cfrac%7B9%7D%7B2%7D%2C0%20%EF%BC%89

当斜率不存在时得AB%E5%B9%B3%E8%A1%8CCD设直线CD为x=a

不妨令A%EF%BC%882%2C4%EF%BC%89%EF%BC%8CC%EF%BC%88a%EF%BC%8C-%5Csqrt%7B8a%7D%20%EF%BC%89%EF%BC%88a%EF%BC%9E3%EF%BC%89

有几何关系得%5Cfrac%7B4%7D%7B3-2%7D%20%3D%5Cfrac%7B%5Csqrt%7B8a%7D%20%7D%7Ba-3%7D%20

化简有2a%5E2-13a%2B18%3D0

解得a%3D%5Cfrac%7B9%7D%7B4%7D%20%EF%BC%88%E8%88%8D%EF%BC%89%EF%BC%8Ca%3D%5Cfrac%7B9%7D%7B2%7D%20

此时直线CD为x%3D%5Cfrac%7B9%7D%7B2%7D%20过点%5Cvarphi%20%EF%BC%88%5Cfrac%7B9%7D%7B2%7D%2C0%20%EF%BC%89

综上,直线CD过定点%5Cvarphi%20%EF%BC%88%5Cfrac%7B9%7D%7B2%7D%2C0%20%EF%BC%89

更多例题:


(圆锥曲线)两点式的变换的评论 (共 条)

分享到微博请遵守国家法律