欢迎光临散文网 会员登陆 & 注册

对勾复对勾(2019课标Ⅱ圆锥曲线)

2022-08-15 12:10 作者:数学老顽童  | 我要投稿

(2019课标Ⅱ,21)已知点A%5Cleft(%20-2%2C0%20%5Cright)%20B%5Cleft(%202%2C0%20%5Cright)%20,动点M%5Cleft(%20x%2Cy%20%5Cright)%20满足直线AM与直线BM的斜率之积为-%5Cfrac%7B1%7D%7B2%7D.记M的轨迹为曲线C.

(1)求C的方程,并说明C是什么曲线;

(2)过坐标原点的直线交CPQ两点,点P在第一象限,PE%5Cbot%20x轴,垂足为E,连接QE并延长交C于点G.

(ⅰ)证明:%5Cbigtriangleup%20PQG是直角三角形;

(ⅱ)求%5Cbigtriangleup%20PQG面积的最大值.


解:(1)由题可知

%5Cfrac%7By%7D%7Bx-%5Cleft(%20-2%20%5Cright)%7D%5Ccdot%20%5Cfrac%7By%7D%7Bx-2%7D%3D-%5Cfrac%7B1%7D%7B2%7D

化简得%5Cfrac%7Bx%5E2%7D%7B4%7D%2B%5Cfrac%7By%5E2%7D%7B2%7D%3D1%5Ccolor%7Bred%7D%7Bx%5Cne%20%5Cpm%202%7D),

所以M的轨迹是椭圆(不含左、右顶点).

(2)先画图


(ⅰ)设点P的坐标为%5Cleft(%20m%2Cn%20%5Cright)%20

则点QE的坐标分别为

%5Cleft(%20-m%2C-n%20%5Cright)%20%5Cleft(%20m%2C0%20%5Cright)%20

则直线PQ的斜率k%3D%5Cfrac%7Bn%7D%7Bm%7D

k_%7BGQ%7D%3Dk_%7BEQ%7D%3D%5Cfrac%7B0-%5Cleft(%20-n%20%5Cright)%7D%7Bm-%5Cleft(%20-m%20%5Cright)%7D%3D%5Cfrac%7Bn%7D%7B2m%7D

所以%5Ccolor%7Bred%7D%7Bk_%7BGQ%7D%3D%5Cfrac%7Bk%7D%7B2%7D%7D……(%5Coplus%20

设点G的坐标为%5Cleft(%20x_0%2Cy_0%20%5Cright)%20

由与点GPQ都在椭圆上,所以

%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7B4%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7B2%7D%3D1

%5Cfrac%7Bm%5E2%7D%7B4%7D%2B%5Cfrac%7Bn%5E2%7D%7B2%7D%3D1

两式相减(点差法)得

%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D-m%5E2%7D%7B4%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D-n%5E2%7D%7B2%7D%3D0

%5Cfrac%7By_%7B0%7D%5E%7B2%7D-n%5E2%7D%7B2%7D%3D-%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D-m%5E2%7D%7B4%7D

%5Cfrac%7By_%7B0%7D%5E%7B2%7D-n%5E2%7D%7Bx_%7B0%7D%5E%7B2%7D-m%5E2%7D%3D-%5Cfrac%7B1%7D%7B2%7D

%5Cfrac%7B%5Cleft(%20y_0-n%20%5Cright)%20%5Cleft(%20y_0%2Bn%20%5Cright)%7D%7B%5Cleft(%20x_0-m%20%5Cright)%20%5Cleft(%20x_0%2Bm%20%5Cright)%7D%3D-%5Cfrac%7B1%7D%7B2%7D

%5Cfrac%7By_0-n%7D%7Bx_0-m%7D%5Ccdot%20%5Cfrac%7By_0%2Bn%7D%7Bx_0%2Bm%7D%3D-%5Cfrac%7B1%7D%7B2%7D

%5Ccolor%7Bred%7D%7Bk_%7BGP%7D%5Ccdot%20k_%7BGQ%7D%3D-%5Cfrac%7B1%7D%7B2%7D%7D……(%5Cotimes%20

(此即椭圆之第三定义

%5Coplus%20%5Cotimes%20可得k_%7BGP%7D%5Ccdot%20k%3D-1

所以PQ%5Cbot%20PG

所以%5Cbigtriangleup%20PQG是直角三角形.

(ⅱ)设直线PQ的方程为y%3Dkx

与椭圆C联立,解得m%3D%5Cfrac%7B2%7D%7B%5Csqrt%7B2k%5E2%2B1%7D%7D

设直线QG的方程为y%3D%5Cfrac%7Bk%7D%7B2%7D%5Cleft(%20x-m%20%5Cright)%20

与椭圆C联立得

%5Cleft(%20k%5E2%2B2%20%5Cright)%20x%5E2-2k%5E2mx%2Bk%5E2m%5E2-8%3D0

所以-m%2Bx_0%3D%5Cfrac%7B2k%5E2m%7D%7Bk%5E2%2B2%7D

所以x_0%3D%5Cfrac%7B2k%5E2m%7D%7Bk%5E2%2B2%7D%2Bm.

所以%5Cbigtriangleup%20PQG水平宽

x_0%2Bm%3D%5Cfrac%7B2k%5E2m%7D%7Bk%5E2%2B2%7D%2B2m%3D4m%5Cleft(%20%5Cfrac%7Bk%5E2%2B1%7D%7Bk%5E2%2B2%7D%20%5Cright)%20.

所以

%5Cbegin%7Baligned%7D%0A%09S_%7B%5Cbigtriangleup%20PQG%7D%26%3D%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20n%5Ccdot%20%5Cleft(%20x_0%2Bm%20%5Cright)%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20km%5Ccdot%204m%5Cleft(%20%5Cfrac%7Bk%5E2%2B1%7D%7Bk%5E2%2B2%7D%20%5Cright)%5C%5C%0A%09%26%3D2km%5E2%5Cleft(%20%5Cfrac%7Bk%5E2%2B1%7D%7Bk%5E2%2B2%7D%20%5Cright)%5C%5C%0A%09%26%3D%5Cfrac%7B8k%5Cleft(%20k%5E2%2B1%20%5Cright)%7D%7B%5Cleft(%202k%5E2%2B1%20%5Cright)%20%5Cleft(%20k%5E2%2B2%20%5Cright)%7D%5C%5C%0A%09%26%3D%5Cfrac%7B8%5Cleft(%20k%2B%5Cfrac%7B1%7D%7Bk%7D%20%5Cright)%7D%7B2%5Cleft(%20k%2B%5Cfrac%7B1%7D%7Bk%7D%20%5Cright)%20%5E2%2B1%7D%5C%5C%0A%5Cend%7Baligned%7D

k%2B%5Cfrac%7B1%7D%7Bk%7D%3Dt%5Cin%20%5Cleft%5B%202%2C%2B%5Cinfty%20%5Cright)%20,则

S_%7B%5Cbigtriangleup%20PQG%7D%3Df%5Cleft(%20t%20%5Cright)%20%3D%5Cfrac%7B8t%7D%7B2t%5E2%2B1%7D%3D%5Cfrac%7B8%7D%7B2t%2B%5Cfrac%7B1%7D%7Bt%7D%7D

易知f%5Cleft(%20t%20%5Cright)%20%5Cleft%5B%202%2C%2B%5Cinfty%20%5Cright)%20%5Csearrow%20,所以

%5Cleft(%20S_%7B%5Cbigtriangleup%20PQG%7D%20%5Cright)%20_%7B%5Cmax%7D%3Df%5Cleft(%20t%20%5Cright)%20_%7B%5Cmax%7D%3Df%5Cleft(%202%20%5Cright)%20%3D%5Ccolor%7Bred%7D%7B%5Cfrac%7B16%7D%7B9%7D%7D.

当且仅当k%3D%5Cfrac%7B1%7D%7Bk%7D,即k%3D1时,取得最大值.

补充一些草稿

%5Cbegin%7Baligned%7D%0A%09%5Cfrac%7B8k%5Cleft(%20k%5E2%2B1%20%5Cright)%7D%7B%5Cleft(%202k%5E2%2B1%20%5Cright)%20%5Cleft(%20k%5E2%2B2%20%5Cright)%7D%26%3D%5Cfrac%7B8%5Cleft(%20k%5E3%2Bk%20%5Cright)%7D%7B2k%5E4%2B5k%5E2%2B2%7D%5C%5C%0A%09%26%3D%5Cfrac%7B8%5Cleft(%20k%2B%5Cfrac%7B1%7D%7Bk%7D%20%5Cright)%7D%7B2k%5E2%2B5%2B%5Cfrac%7B2%7D%7Bk%5E2%7D%7D%5C%5C%0A%09%26%3D%5Cfrac%7B8%5Cleft(%20k%2B%5Cfrac%7B1%7D%7Bk%7D%20%5Cright)%7D%7B2k%5E2%2B4%2B%5Cfrac%7B2%7D%7Bk%5E2%7D%2B1%7D%5C%5C%0A%09%26%3D%5Cfrac%7B8%5Cleft(%20k%2B%5Cfrac%7B1%7D%7Bk%7D%20%5Cright)%7D%7B2%5Cleft(%20k%5E2%2B2%2B%5Cfrac%7B1%7D%7Bk%5E2%7D%20%5Cright)%20%2B1%7D%5C%5C%0A%09%26%3D%5Cfrac%7B8%5Cleft(%20k%2B%5Cfrac%7B1%7D%7Bk%7D%20%5Cright)%7D%7B2%5Cleft%5B%20k%5E2%2B2%5Ccdot%20k%5Ccdot%20%5Cfrac%7B1%7D%7Bk%7D%2B%5Cleft(%20%5Cfrac%7B1%7D%7Bk%7D%20%5Cright)%20%5E2%20%5Cright%5D%20%2B1%7D%5C%5C%0A%09%26%3D%5Cfrac%7B8%5Cleft(%20k%2B%5Cfrac%7B1%7D%7Bk%7D%20%5Cright)%7D%7B2%5Cleft(%20k%2B%5Cfrac%7B1%7D%7Bk%7D%20%5Cright)%20%5E2%2B1%7D%5C%5C%0A%5Cend%7Baligned%7D

对勾复对勾(2019课标Ⅱ圆锥曲线)的评论 (共 条)

分享到微博请遵守国家法律