欢迎光临散文网 会员登陆 & 注册

凝聚态场论常用公式(7):Meisser效应与磁通量子化

2023-03-23 18:04 作者:打电动的阿伟嘻嘻嘻  | 我要投稿

考虑静态电磁系统:%5Cnabla%5Ccdot%5Cboldsymbol%7BH%7D%3D0%2C%5C%20%5Cnabla%5Ctimes%5Cboldsymbol%7BH%7D%3D%5Cboldsymbol%7Bj_s%7D%2C 将其代入唯象London方程可得,

%5Cnabla%5E2%5Cboldsymbol%7BH%7D-%5Cfrac%7B1%7D%7B%5Clambda%5E2_%7BL%7D%7D%5Cboldsymbol%7BH%7D%3D0%2C%5C%20%5Clambda_%7BL%7D%3D(%5Cfrac%7Bm%7D%7B%5Cmu_0n_se%5E2%7D)%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5C%20%E7%A7%B0%E4%B8%BA%7B%5Crm%20London%7D%E7%A9%BF%E9%80%8F%E6%B7%B1%E5%BA%A6.

T%3D0%5C%20%7B%5Crm%20K%7D%2C%5C%20n_s%3Dn%5C%20%E6%97%B6%5C%20%5Clambda_s%E7%BA%A6%E4%B8%BA50%5Cthicksim200%7B%5Crm%20nm.%20%7D

考虑xy平面的二维体系,由对称性知磁场是z方向的函数. 以磁场x轴分类

%5Cnabla%5Ccdot%5Cboldsymbol%7BH%7D%3D0%5CRightarrow%20%5Cfrac%7BdH_z%7D%7Bdz%7D%3D0%2C%20H_z%3D%7B%5Crm%20Const%7D.

%5Cnabla%5E2%5Cboldsymbol%7BH%7D-%5Cfrac%7B1%7D%7B%5Clambda%5E2_%7BL%7D%7D%5Cboldsymbol%7BH%7D%3D0%5CRightarrow%20%5Cfrac%7Bd%5E2H_x%7D%7Bdz%5E2%7D%3D%5Cfrac%7BH_x%7D%7B%5Clambda%5E2_%7BL%7D%7D.

取合适的物理边界条件可得

H_x(z)%3DH_x(0)e%5E%7B-%5Cfrac%7Bz%7D%7B%5Clambda_%7BL%7D%7D%7D%2C%5C%20(j_s)_y(z)%3D(j_s)_y(0)e%5E%7B-%5Cfrac%7Bz%7D%7B%5Clambda_%7BL%7D%7D%7D.

可以看出Meisser效应在超导体内是完全的,在表面不完全,特征长度为London穿透深度.

考虑一个超导环沿着轮廓线L有 H%3D0%2C%5C%20%3Cj_s%3E%3D0. 对London方程做环路积分,

%5Coint_%7BL%7D%5Cnabla%5Ctheta%5Ccdot%20d%5Cboldsymbol%7Bl%7D%3D%5Coint_%7BL%7D%5Cfrac%7B2e%7D%7B%5Chbar%7D%5Cboldsymbol%7BA%7D%5Ccdot%20d%5Cboldsymbol%7Bl%7D%2C 再由Stokes公式可得

%5CPhi%3D%5Cnu%5Cfrac%7Bh%7D%7B2e%7D%3D%5Cnu%5Cphi_0%2C%5C%20%5Cnu%5Cin%5Cmathbb%7BZ%7D%EF%BC%8C此即超导体的磁通量子化.

凝聚态场论常用公式(7):Meisser效应与磁通量子化的评论 (共 条)

分享到微博请遵守国家法律