欢迎光临散文网 会员登陆 & 注册

完整推导导数公式体系(1)

2022-02-05 09:08 作者:匆匆-cc  | 我要投稿

模块零:一些工具

        工具一:导数的定义。

f'(x)%3D%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%20%5Cfrac%7Bf(x%2B%5CDelta%20x)-f(x)%7D%7B%5CDelta%20x%7D%20

        工具二:两个重要极限

%5Clim_%7Bx%5Cto0%7D%20%5Cfrac%7B%5Csin%20x%7D%7Bx%7D%20%3D1

%5Clim_%7Bn%5Cto%5Cinfty%7D%20%5Cleft(1%2B%5Cfrac%7B1%7D%7Bn%7D%5Cright)%5En%20%3De

        第一个极限证明:

            高中推导过,在(0%2C%5Cfrac%7B%5Cpi%7D%7B2%7D)上有

%5Csin%20x%3Cx%3C%5Ctan%20x

            事实上,我们有

            推导1:考察三角函数线,在单位圆中,我们会发现,正弦线%5Cvec%7BDA%7D的大小随着角度逐渐减小会逐渐接近于弧长,这表明:%5Csin%20x%20%5Csim%20x

            推导2:考察图形面积,

S_%7B%5Ctriangle%20AOC%7D%3D%5Cfrac%7B1%7D%7B2%7DAD%5Ccdot%20OC%3D%5Cfrac%7B1%7D%7B2%7D%5Csin%20x%5Ccdot%201%3D%5Cfrac%7B1%7D%7B2%7D%5Csin%20x

S_%7B%E6%89%87AOC%7D%3D%5Cfrac%7B1%7D%7B2%7Dx%5Ccdot%201%5E2%3D%5Cfrac%7B1%7D%7B2%7Dx

S_%7B%5Ctriangle%20BOC%7D%3D%5Cfrac%7B1%7D%7B2%7DBC%5Ccdot%20OC%3D%5Cfrac%7B1%7D%7B2%7D%5Ctan%20x%5Ccdot%201%3D%5Cfrac%7B1%7D%7B2%7D%5Ctan%20x

            注意到

S_%7B%5Ctriangle%20AOC%7D%3CS_%7B%E6%89%87AOC%7D%3CS_%7B%5Ctriangle%20BOC%7D

            所以

%5Csin%20x%3Cx%3C%5Ctan%20x

            考虑到当角度越来越小时,扇形的面积越来越接近于三角形AOC的面积。所以有%5Csin%20x%20%5Csim%20x

    ## 图为%5Ccolor%7Bgray%7D%7B%5Cfrac%7B%5Csin%20x%7D%7Bx%7D%7D图像

        第二个极限证明:

            关于%5Cleft(1%2B%5Cfrac%7B1%7D%7Bn%7D%5Cright)%5En的单调性可参考下面链接。

            链接中直接给出该式的极限是e,下面补充n%5Cto%20%2B%5Cinfty对其上界的证明。

            根据牛顿二项式定理,当n为正整数时,我们有

%5Cbegin%7Balign%7D%0A%5Cleft(1%2B%5Cfrac%7B1%7D%7Bn%7D%5Cright)%5En%0A%26%3D1%2B%5Cfrac%7Bn%7D%7B1!%7D%5Ccdot%5Cfrac%7B1%7D%7Bn%7D%2B%5Cfrac%7Bn(n-1)%7D%7B2!%7D%5Ccdot%5Cfrac%7B1%7D%7Bn%5E2%7D%2B%5Cfrac%7Bn(n-1)(n-2)%7D%7B3!%7D%5Ccdot%5Cfrac%7B1%7D%7Bn%5E3%7D%2B%E2%80%A6%2B%5Cfrac%7Bn(n-1)%E2%80%A6(n-n%2B1)%7D%7Bn!%7D%5Ccdot%5Cfrac%7B1%7D%7Bn%5En%7D%0A%5C%5C%26%3D1%2B1%2B%5Cfrac%7B1%7D%7B2!%7D%5Cleft(1-%5Cfrac%7B1%7D%7Bn%7D%5Cright)%2B%5Cfrac%7B1%7D%7B3!%7D%5Cleft(1-%5Cfrac%7B1%7D%7Bn%7D%5Cright)%5Cleft(1-%5Cfrac%7B2%7D%7Bn%7D%5Cright)%2B%E2%80%A6%2B%5Cfrac%7B1%7D%7Bn!%7D%5Cleft(1-%5Cfrac%7B1%7D%7Bn%7D%5Cright)%5Cleft(1-%5Cfrac%7B2%7D%7Bn%7D%5Cright)%E2%80%A6%5Cleft(1-%5Cfrac%7Bn-1%7D%7Bn%7D%5Cright)%0A%5C%5C%26%3C1%2B1%2B%5Cfrac%7B1%7D%7B2!%7D%2B%5Cfrac%7B1%7D%7B3!%7D%2B%E2%80%A6%2B%5Cfrac%7B1%7D%7Bn!%7D%0A%5C%5C%26%5Cleq%201%2B%5Cleft(1%2B%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B2%5E2%7D%2B%E2%80%A6%2B%5Cfrac%7B1%7D%7B2%5E%7Bn-1%7D%7D%5Cright)%0A%5C%5C%26%3D1%2B%5Cfrac%7B1-%5Cfrac%7B1%7D%7B2%5En%7D%7D%7B1-%5Cfrac%7B1%7D%7B2%7D%7D%0A%5C%5C%26%3D3-%5Cfrac%7B1%7D%7B2%5E%7Bn-1%7D%7D%0A%5C%5C%26%3C3%0A%5Cend%7Balign%7D

            所以该式有上界。

            根据单调有界数列必有极限得到,该式有极限。

            我们用字母e来表示该极限。(当然其实到这里e还是没有算出来,但是仍然可以通过泰勒级数展开来计算,因为这时我们已经承认了%5Clim_%7Bn%5Cto%5Cinfty%7D%20%5Cleft(1%2B%5Cfrac%7B1%7D%7Bn%7D%5Cright)%5En%20%3De

            ## 其实这一切都可以通过%5Ccolor%7Bgray%7De的泰勒展开来说明,但是从严谨性的角度来说,此时不应该出现泰勒展开,因此这里采用了%5Ccolor%7Bgray%7D%7Bn%7D为正整数时的牛顿二项式定理展开。

            另外,还有一个常用的等价无穷小

%5Cbegin%7Balign%7D%0A%5Clim_%7Bx%5Cto0%7D%5Cfrac%7B%5Csqrt%5Bn%5D%7B1%2Bx%7D-1%7D%7B%5Cfrac%7B1%7D%7Bn%7Dx%7D%26%3D%5Clim_%7Bx%5Cto0%7D%5Cfrac%7B(%5Csqrt%5Bn%5D%7B1%2Bx%7D)%5En-1%7D%7B%5Cfrac%7B1%7D%7Bn%7Dx%5B%5Csqrt%5Bn%5D%7B(1%2Bx)%5E%7Bn-1%7D%7D%2B%5Csqrt%5Bn%5D%7B(1%2Bx)%5E%7Bn-2%7D%7D%2B%E2%80%A6%2B1%5D%7D%0A%5C%5C%26%3D%5Clim_%7Bx%5Cto0%7D%5Cfrac%7Bn%7D%7B%5Csqrt%5Bn%5D%7B(1%2Bx)%5E%7Bn-1%7D%7D%2B%5Csqrt%5Bn%5D%7B(1%2Bx)%5E%7Bn-2%7D%7D%2B%E2%80%A6%2B1%7D%0A%5C%5C%26%3D%5Cfrac%7Bn%7D%7Bn%7D%0A%5C%5C%26%3D1%0A%5Cend%7Balign%7D

        工具三:函数求导法则

            ①函数的和差积商求导法则

            和、差:

%5Cbegin%7Balign%7D%0A%5Bu(x)%5Cpm%20v(x)%5D'%26%3D%5Clim_%7B%5CDelta%20x%5Cto0%7D%5Cfrac%7B%5Bu(x%2B%5CDelta%20x)%5Cpm%20v(x%2B%5CDelta%20x)%5D-%5Bu(x)%5Cpm%20v(x)%5D%7D%7B%5CDelta%20x%7D%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%5Cto0%7D%5Cfrac%7Bu(x%2B%5CDelta%20x)-u(x)%7D%7B%5CDelta%20x%7D%5Cpm%5Clim_%7B%5CDelta%20x%5Cto0%7D%5Cfrac%7Bv(x%2B%5CDelta%20x)-v(x)%7D%7B%5CDelta%20x%7D%0A%5C%5C%26%3Du'(x)%5Cpm%20v'(x)%0A%5Cend%7Balign%7D

            积:

%5Cbegin%7Balign%7D%0A%5Bu(x)v(x)%5D'%26%3D%5Clim_%7B%5CDelta%20x%5Cto0%7D%5Cfrac%7Bu(x%2B%5CDelta%20x)v(x%2B%5CDelta%20x)-u(x)v(x)%7D%7B%5CDelta%20x%7D%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%5Cto0%7D%5Cleft%5B%5Cfrac%7Bu(x%2B%5CDelta%20x)-u(x)%7D%7B%5CDelta%20x%7D%5Ccdot%20v(x%2B%5CDelta%20x)%2Bu(x)%5Ccdot%5Cfrac%7Bv(x%2B%5CDelta%20x)-v(x)%7D%7B%5CDelta%20x%7D%5Cright%5D%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%5Cto0%7D%5Cfrac%7Bu(x%2B%5CDelta%20x)-u(x)%7D%7B%5CDelta%20x%7D%5Ccdot%20%5Clim_%7B%5CDelta%20x%5Cto0%7Dv(x%2B%5CDelta%20x)%2Bu(x)%5Ccdot%5Clim_%7B%5CDelta%20x%5Cto0%7D%5Cfrac%7Bv(x%2B%5CDelta%20x)-v(x)%7D%7B%5CDelta%20x%7D%0A%5C%5C%26%3Du'(x)v(x)%2Bu(x)v'(x)%0A%5Cend%7Balign%7D

            商:

%5Cbegin%7Balign%7D%0A%5Cleft%5B%5Cfrac%7Bu(x)%7D%7Bv(x)%7D%5Cright%5D'%26%3D%5Clim_%7B%5CDelta%20x%5Cto0%7D%5Cfrac%7B%5Cfrac%7Bu(x%2B%5CDelta%20x)%7D%7Bv(x%2B%5CDelta%20x)%7D-%5Cfrac%7Bu(x)%7D%7Bv(x)%7D%7D%7B%5CDelta%20x%7D%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%5Cto0%7D%5Cfrac%7Bu(x%2B%5CDelta%20x)v(x)-u(x)v(x%2B%5CDelta%20x)%7D%7Bv(x%2B%5CDelta%20x)v(x)%5CDelta%20x%7D%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%5Cto0%7D%5Cfrac%7B%5Bu(x%2B%5CDelta%20x)-u(x)%5Dv(x)-u(x)%5Bv(x%2B%5CDelta%20x)-v(x)%5D%7D%7Bv(x%2B%5CDelta%20x)v(x)%5CDelta%20x%7D%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%5Cto0%7D%5Cfrac%7B%5Cfrac%7Bu(x%2B%5CDelta%20x)-u(x)%7D%7B%5CDelta%20x%7Dv(x)-u(x)%5Cfrac%7Bv(x%2B%5CDelta%20x)-v(x)%7D%7B%5CDelta%20x%7D%7D%7Bv(x%2B%5CDelta%20x)v(x)%7D%0A%5C%5C%26%3D%5Cfrac%7Bu'(x)v(x)-u(x)v'(x)%7D%7Bv%5E2(x)%7D%0A%5Cend%7Balign%7D

            ②反函数的求导法则

%5Cfrac%7Bdy%7D%7Bdx%7D%3D%5Cfrac%7B1%7D%7B%5Cfrac%7Bdx%7D%7Bdy%7D%7D

            也就是说,反函数的导数等于原函数的导数的倒数

            ③复合函数的求导法则

%5Cfrac%7Bdy%7D%7Bdx%7D%3D%5Cfrac%7Bdy%7D%7Bdu%7D%5Ccdot%5Cfrac%7Bdu%7D%7Bdx%7D

            这只是简单证明,存在不严格之处。(分子分母同乘的数可能为0)

            ④隐函数的求导法则(微分

            简单来说,就是等式两边同时对x求导。

模块一:常函数

f(x)%3DC

%5Cbegin%7Balign%7D%0Af'(x)%26%3D%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%20%5Cfrac%7Bf(x%2B%5CDelta%20x)-f(x)%7D%7B%5CDelta%20x%7D%20%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%20%5Cfrac%7BC-C%7D%7B%5CDelta%20x%7D%20%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%200%0A%5C%5C%26%3D0%0A%5Cend%7Balign%7D

模块二:幂函数

f(x)%3Dx%5E%5Calpha

%5Cbegin%7Balign%7D%0Af'(x)%26%3D%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%20%5Cfrac%7Bf(x%2B%5CDelta%20x)-f(x)%7D%7B%5CDelta%20x%7D%20%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%20%5Cfrac%7B(x%2B%5CDelta%20x)%5E%5Calpha-x%5E%5Calpha%7D%7B%5CDelta%20x%7D%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%20%5Cfrac%7Bx%5E%5Calpha%2B%5Calpha%20x%5E%7B%5Calpha-1%7D%5CDelta%20x%2B%5Cfrac%7B%5Calpha(%5Calpha-1)%7D%7B2%7Dx%5E%7B%5Calpha-2%7D(%5CDelta%20x)%5E2%2B%E2%80%A6%2B(%5CDelta%20x)%5E%5Calpha-x%5E%5Calpha%7D%7B%5CDelta%20x%7D%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%20%5Cfrac%7B%5Calpha%20x%5E%7B%5Calpha-1%7D%5CDelta%20x%2B%5Cfrac%7B%5Calpha(%5Calpha-1)%7D%7B2%7Dx%5E%7B%5Calpha-2%7D(%5CDelta%20x)%5E2%2B%E2%80%A6%2B(%5CDelta%20x)%5E%5Calpha%7D%7B%5CDelta%20x%7D%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%20%5Cleft%5B%5Calpha%20x%5E%7B%5Calpha-1%7D%2B%5Cfrac%7B%5Calpha(%5Calpha-1)%7D%7B2%7Dx%5E%7B%5Calpha-2%7D%5CDelta%20x%2B%E2%80%A6%2B(%5CDelta%20x)%5E%7B%5Calpha-1%7D%5Cright%5D%0A%5C%5C%26%3D%5Calpha%20x%5E%7B%5Calpha-1%7D%0A%5Cend%7Balign%7D

        以上证明限于%5Calpha为正整数的情形。

        下面证明%5Calpha为实数的情形。

%5Cbegin%7Balign%7D%0Af'(x)%26%3D%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%20%5Cfrac%7Bf(x%2B%5CDelta%20x)-f(x)%7D%7B%5CDelta%20x%7D%20%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%20%5Cfrac%7B(x%2B%5CDelta%20x)%5E%5Calpha-x%5E%5Calpha%7D%7B%5CDelta%20x%7D%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%5Cto0%7Dx%5E%5Calpha%5Cfrac%7B%5Cleft(1%2B%5Cfrac%7B%5CDelta%20x%7D%7Bx%7D%5Cright)%5E%5Calpha-1%7D%7B%5CDelta%20x%7D%0A%5C%5C%26%3Dx%5E%5Calpha%5Cfrac%7B%5Calpha%5Cfrac%7B%5CDelta%20x%7D%7Bx%7D%7D%7B%5CDelta%20x%7D%5C%23%0A%5C%5C%26%3D%5Calpha%20x%5E%7B%5Calpha-1%7D%0A%5Cend%7Balign%7D

    ## 这里用到了等价无穷小

模块三:对数函数

f(x)%3D%5Clog_a%20x%20

%5Cbegin%7Balign%7D%0Af'(x)%26%3D%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%20%5Cfrac%7Bf(x%2B%5CDelta%20x)-f(x)%7D%7B%5CDelta%20x%7D%20%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%20%5Cfrac%7B%5Clog_a(x%2B%5CDelta%20x)-%5Clog_ax%7D%7B%5CDelta%20x%7D%20%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%5Cfrac%7B%5Clog_a%5Cleft(1%2B%5Cfrac%7B%5CDelta%20x%7D%7Bx%7D%5Cright)%7D%7B%5CDelta%20x%7D%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%5Clog_a%5Cleft(1%2B%5Cfrac%7B%5CDelta%20x%7D%7Bx%7D%5Cright)%5E%7B%5Cfrac%7B1%7D%7B%5CDelta%20x%7D%7D%0A%5C%5C%26%3D%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%5Clog_a%5Cleft(%5Cleft(1%2B%5Cfrac%7B%5CDelta%20x%7D%7Bx%7D%5Cright)%5E%7B%5Cfrac%7Bx%7D%7B%5CDelta%20x%7D%7D%5Cright)%5E%7B%5Cfrac%7B1%7D%7Bx%7D%7D%0A%5C%5C%26%3D%5Clog_a%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%5Cleft(%5Cleft(1%2B%5Cfrac%7B%5CDelta%20x%7D%7Bx%7D%5Cright)%5E%7B%5Cfrac%7Bx%7D%7B%5CDelta%20x%7D%7D%5Cright)%5E%7B%5Cfrac%7B1%7D%7Bx%7D%7D%0A%5C%5C%26%3D%5Cfrac%7B1%7D%7Bx%7D%5Clog_a%5Clim_%7B%5CDelta%20x%20%5Cto%200%7D%5Cleft(1%2B%5Cfrac%7B%5CDelta%20x%7D%7Bx%7D%5Cright)%5E%7B%5Cfrac%7Bx%7D%7B%5CDelta%20x%7D%7D%0A%5C%5C%26%3D%5Cfrac%7B1%7D%7Bx%7D%5Clog_ae%5C%23%0A%5C%5C%26%3D%5Cfrac%7B1%7D%7Bx%5Cln%20a%7D%0A%5Cend%7Balign%7D

    ## 这里用到了重要极限

        特别的,当a%3De时,有

(%5Cln%20x)'%3D%5Cfrac%7B1%7D%7Bx%7D

模块四:指数函数

f(x)%3Da%5Ex

y%3Da%5Ex

x%3D%5Clog_ay

1%3D%5Cfrac%7B1%7D%7By%5Cln%20a%7D%5Ccdot%5Cfrac%7Bdy%7D%7Bdx%7D

f'(x)%3Dy%5Cln%20a%3Da%5Ex%5Cln%20a

        特别的,当a%3De时,有

(e%5Ex)'%3De%5Ex

    ## 呜呼,又被系统制裁了,一个文档最多100张图片(公式也算),超额了。。。看后文吧。。。

完整推导导数公式体系(1)的评论 (共 条)

分享到微博请遵守国家法律