欢迎光临散文网 会员登陆 & 注册

尝试一种不一样的解法(2018课标Ⅰ圆锥曲线)

2022-08-21 20:50 作者:数学老顽童  | 我要投稿

(2018课标Ⅰ,19)设椭圆C%5Cfrac%7Bx%5E2%7D%7B2%7D%2By%5E2%3D1的右焦点为F,过F的直线l与椭圆交于AB两点,点M的坐标为%5Cleft(%202%2C0%20%5Cright)%20..

(1)当lx轴垂直时,求直线AM的方程;

(2)设O为坐标原点,证明:%5Cangle%20OMA%3D%5Cangle%20OMB.

解:(1)易知F的坐标为%5Cleft(%201%2C0%20%5Cright)%20

lx轴垂直时,其方程为x%3D1

C联立解得y%3D%5Cpm%20%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D

所以A的坐标为%5Cleft(%201%2C%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%20%5Cright)%20%5Cleft(%201%2C-%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%20%5Cright)%20

A的坐标为%5Cleft(%201%2C%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%20%5Cright)%20时,

直线AM的方程为:%5Cfrac%7By%7D%7B%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%7D%3D%5Cfrac%7Bx-2%7D%7B1-2%7D

化简得%5Ccolor%7Bred%7D%7Bx%2B%5Csqrt%7B2%7Dy-2%3D0%7D

同理可知,当A的坐标为%5Cleft(%201%2C-%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%20%5Cright)%20时,

直线AM的方程为%5Ccolor%7Bred%7D%7Bx-%5Csqrt%7B2%7Dy-2%3D0%7D.

(2)先画图

分别设

直线ABx-1%3Dmy

直线AMx-2%3D%5Clambda%20y

直线BMx-2%3D%5Cmu%20y

因为A在直线AB、直线AM上,所以

x_A-1%3Dmy_A

x_A-2%3D%5Clambda%20y_A

两式各自平方,得

x_%7BA%7D%5E%7B2%7D-2x_A%2B1%3Dm%5E2y_%7BA%7D%5E%7B2%7D……①

x_%7BA%7D%5E%7B2%7D-4x_A%2B4%3D%5Clambda%20%5E2y_%7BA%7D%5E%7B2%7D……②,

②—2%5Ccolor%7Bred%7D%7B%5Ctimes%20%7D,得,

2-x_%7BA%7D%5E%7B2%7D%3D%5Cleft(%20%5Clambda%20%5E2-2m%5E2%20%5Cright)%20y_%7BA%7D%5E%7B2%7D……③

又因为A在椭圆C上,所以

%5Cfrac%7Bx_%7BA%7D%5E%7B2%7D%7D%7B2%7D%2By_%7BA%7D%5E%7B2%7D%3D1

变形得2-x_%7BA%7D%5E%7B2%7D%3D2y_%7BA%7D%5E%7B2%7D……④


由③、④可知

2%3D%5Clambda%20%5E2-2m%5E2

%5Ccolor%7Bred%7D%7B%5Clambda%20%5E2%3D2m%5E2%2B2%7D

同理可得%5Ccolor%7Bred%7D%7B%5Cmu%20%5E2%3D2m%5E2%2B2%7D

又因为%5Cmu%20%5Cne%20%5Clambda%20

所以%5Ccolor%7Bred%7D%7B%5Cmu%20%3D-%5Clambda%20%7D.

所以%5Cangle%20OMA%3D%5Cangle%20OMB.

证毕.

尝试一种不一样的解法(2018课标Ⅰ圆锥曲线)的评论 (共 条)

分享到微博请遵守国家法律