欢迎光临散文网 会员登陆 & 注册

【趣味数学题】无穷算术-几何级数

2021-07-19 20:47 作者:AoiSTZ23  | 我要投稿

 郑涛 (Tao Steven Zheng) 著

【问题】

这道题是我高中时最喜欢的数学问题之一!

证明如果 %7Cr%7C%20%3C%201 , a%E3%80%81b 都是常数, 计算无穷算术-几何级数 [1](infinite arithmetic-geometric series)是

%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20(a%2Bnb)%7Br%7D%5E%7Bn%7D%20%3D%20%5Cfrac%7Ba%7D%7B1-r%7D%20%2B%20%5Cfrac%7Bbr%7D%7B(1-r)%5E2%7D

[1] 算术级数(arithmetic series)也叫 "等差级数"

【题解】

把级数分成两部分

%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20(a%2Bnb)%7Br%7D%5E%7Bn%7D%20%3D%20%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20a%7Br%7D%5E%7Bn%7D%20%2B%20%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20nb%7Br%7D%5E%7Bn%7D

如果 %7Cr%7C%20%3C%201%20, 第一部分是收敛的无穷几何级数(geometric series, 也叫 "等比级数")。计算这个几何级数的公式是

%20%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20a%7Br%7D%5E%7Bn%7D%20%3D%20a(1%2Br%2Br%5E2%2B...)%20%3D%20%5Cfrac%7Ba%7D%7B1-r%7D

现在考虑和的第二部分

%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20nb%7Br%7D%5E%7Bn%7D%20%3D%20br%2B2br%5E2%2B3br%5E3%2B...

然后分解出 br

%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20nb%7Br%7D%5E%7Bn%7D%20%3D%20br(1%2B2r%2B3r%5E2%2B...)

收敛的无穷几何级数是

1%2Br%2Br%5E2...%20%3D%20%5Cfrac%7B1%7D%7B1-r%7D

通过求无穷几何级数的导函数(derivative), 得

1%2B2r%2B3r%5E2%2B...%20%3D%20%5Cfrac%7Bd%7D%7Bdr%7D%5Cleft(%5Cfrac%7B1%7D%7B1-r%7D%5Cright)

1%2B2r%2B3r%5E2%2B...%20%3D%20%5Cfrac%7B1%7D%7B(1-r)%5E2%7D

所以,

%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20nb%7Br%7D%5E%7Bn%7D%20%3D%20%5Cfrac%7Bbr%7D%7B(1-r)%5E2%7D

因此,

%20%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20(a%2Bnb)%7Br%7D%5E%7Bn%7D%20%3D%20%5Cfrac%7Ba%7D%7B1-r%7D%20%2B%20%5Cfrac%7Bbr%7D%7B(1-r)%5E2%7D%20



【趣味数学题】无穷算术-几何级数的评论 (共 条)

分享到微博请遵守国家法律