欢迎光临散文网 会员登陆 & 注册

[Calculus] Infinite Arithmetic-Geometric Series

2021-07-19 20:47 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (郑涛)

【Problem】

This problem is one of my favourite problems recorded in one of my high school mathematical notebooks!

Show that if %7Cr%7C%20%3C%201 , and a%2C%20b are constants, then

%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20(a%2Bnb)%7Br%7D%5E%7Bn%7D%20%3D%20%5Cfrac%7Ba%7D%7B1-r%7D%20%2B%20%5Cfrac%7Bbr%7D%7B(1-r)%5E2%7D

【Solution】

Break the series into two parts

%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20(a%2Bnb)%7Br%7D%5E%7Bn%7D%20%3D%20%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20a%7Br%7D%5E%7Bn%7D%20%2B%20%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20nb%7Br%7D%5E%7Bn%7D

When %7Cr%7C%20%3C%201%20, the first part of the sum is a convergent infinite geometric series. The formula for calculating this series is well known:

%20%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20a%7Br%7D%5E%7Bn%7D%20%3D%20a(1%2Br%2Br%5E2%2B...)%20%3D%20%5Cfrac%7Ba%7D%7B1-r%7D

Now consider the second part of the sum

%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20nb%7Br%7D%5E%7Bn%7D%20%3D%20br%2B2br%5E2%2B3br%5E3%2B...

Factor our br:

%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20nb%7Br%7D%5E%7Bn%7D%20%3D%20br(1%2B2r%2B3r%5E2%2B...)

It is known that from the convergent infinite geometric series that

1%2Br%2Br%5E2...%20%3D%20%5Cfrac%7B1%7D%7B1-r%7D

Notice that by differentiating the left-hand side of the above series, we get

1%2B2r%2B3r%5E2%2B...%20%3D%20%5Cfrac%7Bd%7D%7Bdr%7D%5Cleft(%5Cfrac%7B1%7D%7B1-r%7D%5Cright)

Consequently,

1%2B2r%2B3r%5E2%2B...%20%3D%20%5Cfrac%7B1%7D%7B(1-r)%5E2%7D

and

%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20nb%7Br%7D%5E%7Bn%7D%20%3D%20%5Cfrac%7Bbr%7D%7B(1-r)%5E2%7D

Therefore,

%20%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20(a%2Bnb)%7Br%7D%5E%7Bn%7D%20%3D%20%5Cfrac%7Ba%7D%7B1-r%7D%20%2B%20%5Cfrac%7Bbr%7D%7B(1-r)%5E2%7D%20


[Calculus] Infinite Arithmetic-Geometric Series的评论 (共 条)

分享到微博请遵守国家法律