欢迎光临散文网 会员登陆 & 注册

工程数学附录_傅里叶级数与傅里叶变换

2023-02-25 20:27 作者:sky92昙  | 我要投稿

这里要首先证明三角函数的正交性然后,既然证明了正交,利用加权求和的形式得到关于周期为 2%5Cpi 函数的傅里叶级数,再把周期扩展到任意L
为了简化公式,使用欧拉公式把复数域和三角函数混合的形式区别统合起来,于是有了周期函数的复指数表达
,最终的周期复指表达中会算得一个系数项,整个展开的矛盾就转移到了该系数中,然后我们将整个函数推广到非周期函数中,即将周期推到无限的函数,无限导致的就是级数求和成为连续积分 ,最后得到规整的式子,就是傅里叶变换和逆变换;

三角函数的正交性

三角函数正交性是傅里叶级数的基础

我们有个 三角函数系 集合

%5C%7B%20%5Csin%200x%3D0%20%2C%20%5Ccos%200x%3D1%2C%20%5Csin%20x%20%5Ccos%20x%2C%5Csin%202x%20%5Ccos%202x%2C...%2C%5Csin%20nx%20%5Ccos%20nx%2C...%20%5C%7D


%5C%7B%20%5Csin%20nx%20%2C%5Ccos%20nx%20%5C%7D%2Cn%20%3D%200%2C1%2C2%2C...

那么什么是正交,向量内积为0是正交,函数则这里有个定义 :
%5Cint%5E%5Cpi_%7B-%5Cpi%7D%20%5Csin%20nx%20%5Ccos%20mx%20dx%20%3D0%20%20
%5Cint%5E%5Cpi_%7B-%5Cpi%7D%20%5Ccos%20mx%20%5Ccos%20nx%20dx%20%3D0%20%20%2C%20n%5Cneq%20m%20

那么上述的三角函数正交的情况是怎么来的?
简单来说,其实正交就是垂直 , 也就是两个向量的内积为0的时候就是正交;

%5Cvec%20a%20%5Ccdot%20%5Cvec%20b%20%3D%20%7C%5Cvec%20a%7C%7C%5Cvec%20b%7C%5Ccos%5Cphi%20%3D%20%7C%5Cvec%20a%7C%7C%5Cvec%20b%7C%20%5Ccdot%200%3D0 就平面上来说正交是这样,那么如果用向量表达出来,假设两者在n维度场:
%5Cvec%20a%20%5Ccdot%20%5Cvec%20b%20%3D%20a_1%20b_1%2Ba_2%20b_2%2B...%2Ba_n%20b_n%3D%5Csum%5Climits%5E%5Cinfty_%7Bi%3D1%7Da_i%20b_i%3D0
如果上述求和公式并非取整数,而是连续实数,那么上述的求和就成为了积分;
于是当我们将向量转为无限维的函数,意味着其向量内元素是无限且稠密的,但某个元素总是可用函数自变量表达

a%20%5Ccdot%20b%20%3D%5Cint%5E%7Bx_1%7D_%7Bx_0%7Df(x)g(x)dx%20%5C%5Ca%3Df(x)%2Cb%3Dg(x)%20%2Cx%5Cin(x_0%2Cx_1)

由此我们定义出了函数之间的内积以及函数的正交;

于是我们要在三角函数上证明,,利用三角积化和差公式,以及奇函数性质:
%5Cint%5E%5Cpi_%7B-%5Cpi%7D%20%5Ccos%20nx%20%5Ccos%20mx%20dx%20%2C%20n%5Cneq%20m%20%5Crightarrow%20%20%5C%5C%20%0A%5Cfrac%7B1%7D%7B2%7D%5Cint%5E%5Cpi_%7B-%5Cpi%7D%20%5Ccos%20(n-m)x%20%5Ccos%20(n%2Bm)x%20dx%20%5C%5C%3D%0A%5Cfrac%7B1%7D%7B2%7D%5Cint%5E%5Cpi_%7B-%5Cpi%7D%20%5Ccos%20(n-m)x%20dx%20%5Cfrac%7B1%7D%7B2%7D%5Cint%5E%5Cpi_%7B-%5Cpi%7D%5Ccos%20(n%2Bm)x%20dx%20%5C%5C%3D%0A%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7B1%7D%7Bn-m%7D%20%5Csin%20(n-m)x%20%7C%5E%5Cpi_%7B-%5E%5Cpi%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7B1%7D%7Bn-m%7D%5Csin%20(n%2Bm)x%7C%5E%5Cpi_%7B-%5E%5Cpi%7D%20%3D%0A0%2B0%3D0

同样我们也可验证:
%5Cint%5E%5Cpi_%7B-%5Cpi%7D%20%5Ccos%20nx%20%5Csin%20mx%20dx%20%3D%200%2C%20n%5Cneq%20m%20%5C%5C%20%5Cint%5E%5Cpi_%7B-%5Cpi%7D%20%5Csin%20nx%20%5Csin%20mx%20dx%20%3D%200%2C%20n%5Cneq%20m%20

那么如果n = m ,就有 

%5Cint%5E%5Cpi_%7B-%5Cpi%7D%20%5Ccos%20nx%20%5Ccos%20mx%20dx%20%2C%20n%3Dm%5Cneq0%20%20%5Crightarrow%20%5C%5C%0A%20%5Cint%5E%5Cpi_%7B-%5Cpi%7D%20%5Cfrac%7B1%7D%7B2%7D%5B1%2B%5Ccos2mx%5D%20dx%20%5C%5C%3D%20%0A%5Cfrac%7B1%7D%7B2%7D%20%5B%5Cint%5E%5Cpi_%7B-%5Cpi%7D%201%20dx%2B%20%5Cint%5E%5Cpi_%7B-%5Cpi%7D%5Ccos2mx%20dx%20%5D%20%20%5C%5C%3D%0A%5Cfrac%7B1%7D%7B2%7D%20%5B%5Cint%5E%5Cpi_%7B-%5Cpi%7D%201%20dx%2B%20%5Cint%5E%5Cpi_%7B-%5Cpi%7D%5Ccos0x%5Ccos2mx%20dx%20%5D%20%20%5C%5C%3D%0A%5Cfrac%7B1%7D%7B2%7D%5B%5Cpi%2B0%5D%3D%5Cpi

那么我们将上述所有三角函数正交的情况罗列出来:

 %5Cint%5E%5Cpi_%7B-%5Cpi%7D%20%5Csin%20nx%20%5Ccos%20mx%20dx%20%3D0%20%5C%5C%20%0A%5Cint%5E%5Cpi_%7B-%5Cpi%7D%20%5Csin%20nx%20%5Csin%20mx%20dx%20%3D%200%20%2Cn%5Cneq%20m%20%5C%5C%20%0A%5Cint%5E%5Cpi_%7B-%5Cpi%7D%20%5Csin%20nx%20%5Csin%20mx%20dx%20%3D%20%5Cpi%20%2Cn%3Dm%5Cneq0%20%5C%5C%20%0A%5Cint%5E%5Cpi_%7B-%5Cpi%7D%20%5Csin%20nx%20%5Csin%20mx%20dx%20%3D%202%5Cpi%20%2Cn%3Dm%3D0%20%5C%5C%0A%5Cint%5E%5Cpi_%7B-%5Cpi%7D%20%5Ccos%20nx%20%5Ccos%20mx%20dx%20%3D%200%20%2Cn%5Cneq%20m%20%5C%5C%20%0A%5Cint%5E%5Cpi_%7B-%5Cpi%7D%20%5Ccos%20nx%20%5Ccos%20mx%20dx%20%3D%20%5Cpi%20%2Cn%3Dm%5Cneq0%20%5C%5C%20%0A%5Cint%5E%5Cpi_%7B-%5Cpi%7D%20%5Ccos%20nx%20%5Ccos%20mx%20dx%20%3D%202%5Cpi%20%2Cn%3Dm%3D0%0A


 

周期为 2%5Cpi 的函数展开为傅里叶级数

拿到一个周期为T%20%3D%202%5Cpi的函数   f(x)%3Df(x%2B2%5Cpi)%20 

将其展开为三角函数的加和,那么两个三角函数作为基底进行加权组合,两种表达方式:

f(x)%3D%5Csum%5Climits%5E%5Cinfty_%7Bn%3D0%7Da_n%5Ccos%20nx%2B%5Csum%5Climits%5E%5Cinfty_%7Bn%3D0%7Db_n%5Csin%20nx%20%5C%5C%0Af(x)%3Da_0%5Ccos0x%2B%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Da_n%5Ccos%20nx%2Bb_0%5Csin0x%2B%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Db_n%5Csin%20nx%3Da_0%2B%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Da_n%5Ccos%20nx%2B%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Db_n%5Csin%20nx

我们需要求出这里的a_0

对上述第二式两边积分

%5Cint%5E%5Cpi_%7B-%5Cpi%7Df(x)dx%3D%5Cint%5E%5Cpi_%7B-%5Cpi%7Da_0dx%2B%5Cint%5E%5Cpi_%7B-%5Cpi%7D%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Da_n%5Ccos%20nx%20dx%2B%5Cint%5E%5Cpi_%7B-%5Cpi%7D%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Db_n%5Csin%20nx%20dx%20%3D%0Aa_0%5Cint%5E%5Cpi_%7B-%5Cpi%7Ddx%2B0%2B0%3Da_0x%7C%5E%5Cpi_%7B-%5Cpi%7D%3D2%5Cpi%20a_0

于是可以得到  a_0%3D%5Cfrac%7B1%7D%7B2%5Cpi%7D%5Cint%5E%5Cpi_%7B-%5Cpi%7Df(x)dx%20 ,这个公式有时为了后续计算方便通常两侧都乘2 得到

a_0%3D%5Cfrac%7B1%7D%7B2%5Cpi%7D%5Cint%5E%5Cpi_%7B-%5Cpi%7Df(x)dx%20%2C%20%20a'_0%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%5Cint%5E%5Cpi_%7B-%5Cpi%7Df(x)dx

接下来求 a_n

我们对等式两侧乘以 %5Ccos%20mx,然后两侧进行积分

%5Cint%5E%5Cpi_%7B-%5Cpi%7Df(x)%5Ccos%20mx%20dx%20%5C%5C%0A%3D%5Cint%5E%5Cpi_%7B-%5Cpi%7Da_0%5Ccos%20mxdx%2B%5Cint%5E%5Cpi_%7B-%5Cpi%7D%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Da_n%5Ccos%20nx%5Ccos%20mx%20dx%2B%5Cint%5E%5Cpi_%7B-%5Cpi%7D%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Db_n%5Csin%20nx%20%5Ccos%20mxdx%5C%5C%0A%3D0%2B%5Cint%5E%5Cpi_%7B-%5Cpi%7D%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Da_n%5Ccos%20nx%5Ccos%20mx%20dx%2B0

此时我们观察到 上式仅在n=m的时候出现非零项

f(x)%3Df(x%2B2L)

得到

a_n%20%3D%20%5Cfrac%7B1%7D%7B%5Cpi%7D%5Cint%5E%5Cpi_%7B-%5Cpi%7Df(x)%5Ccos%20nx%20dx

接下来求解 b_n

我们对等式两侧乘以 %5Csin%20mx 然后对两侧进行积分

%5Cint%5E%5Cpi_%7B-%5Cpi%7Df(x)%5Csin%20mx%20dx%20%5C%5C%0A%3D%5Cint%5E%5Cpi_%7B-%5Cpi%7Da_0%5Csin%20mxdx%2B%5Cint%5E%5Cpi_%7B-%5Cpi%7D%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Da_n%5Ccos%20nx%5Csin%20mx%20dx%2B%5Cint%5E%5Cpi_%7B-%5Cpi%7D%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Db_n%5Csin%20nx%20%5Csin%20mxdx%5C%5C%0A%3D0%2B0%2B%5Cint%5E%5Cpi_%7B-%5Cpi%7D%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Db_n%5Csin%20nx%5Csin%20mx%20dx

此时我们观察到 上式仅在n=m的时候出现非零项 %5Cint%5E%5Cpi_%7B-%5Cpi%7Df(x)%5Ccos%20nx%20dx%20%3Db_n%5Cint%5E%5Cpi_%7B-%5Cpi%7D%5Csin%5E2%20nx%20dx%3Db_n%5Cpi%20

得到

b_n%20%3D%20%5Cfrac%7B1%7D%7B%5Cpi%7D%5Cint%5E%5Cpi_%7B-%5Cpi%7Df(x)%5Csin%20nx%20dx

那么我们得到了周期为 2%5Cpi 函数的完整傅里叶级数的展开

f(x)%3Df(x%2B2%5Cpi)%2CT%3D2%5Cpi%20%5C%5C%0Af(x)%0A%3D%20%5Cfrac%7Ba'_0%7D%7B2%7D%20%2B%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Da_n%5Ccos%20nx%2B%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Db_n%5Csin%20nx%20%0A%3D%20a_0%20%2B%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Da_n%5Ccos%20nx%2B%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Db_n%5Csin%20nx%20%5C%5C%20%20%0Aa'_0%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%5Cint%5E%5Cpi_%7B-%5Cpi%7Df(x)dx%2C%20a_0%3D%5Cfrac%7B1%7D%7B2%5Cpi%7D%5Cint%5E%5Cpi_%7B-%5Cpi%7Df(x)dx%20%5C%5C%20%20%0Aa_n%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%5Cint%5E%5Cpi_%7B-%5Cpi%7Df(x)%5Ccos%20nxdx%20%5C%5C%20%20%0Ab_n%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%5Cint%5E%5Cpi_%7B-%5Cpi%7Df(x)%5Csin%20nxdx

周期为2L的函数展开为傅里叶级数

拿到一个周期为T%20%3D%202L的函数  f(x)%3Df(x%2B2L)

可以直接使用换元方法  %5Cfrac%7B%5Cpi%7D%7BL%7D%3D%5Cfrac%7Bx%7D%7Bt%7D%5Crightarrow%20x%3D%5Cfrac%7B%5Cpi%7D%7BL%7Dt%20%5Crightarrow%20t%20%3D%20%5Cfrac%7BL%7D%7B%5Cpi%7Dx

f(t)%3Df(%5Cfrac%7BL%7D%7B%5Cpi%7Dx)%5Ctriangleq%20g(x)

那么我们可得到

%20x%20%3D%20%5Cfrac%7B%5Cpi%7D%7BL%7Dt%2C%5Ccos%20nx%3D%5Ccos%5Cfrac%7Bn%5Cpi%7D%7BL%7Dt%2C%5Csin%20nx%3D%5Csin%20%5Cfrac%7Bn%5Cpi%7D%7BL%7Dt%2C%5C%5C%0A%5Cint%5E%5Cpi_%7B-%5Cpi%7Ddx%3D%5Cint%5EL_%7B-L%7Dd%5Cfrac%7B%5Cpi%7D%7BL%7Dt%20%5Crightarrow%20%5Cfrac%7B1%7D%7B%5Cpi%7D%5Cint%5E%5Cpi_%7B-%5Cpi%7Ddx%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%5Cfrac%7B%5Cpi%7D%7BL%7D%5Cint%5EL_%7B-L%7Ddt%3D%20%5Cfrac%7B1%7D%7BL%7D%5Cint%5EL_%7B-L%7Ddt

显然其实形式并没有太大的变化

f(t)%3Df(t%2B2L)%2CT%3D2L%20%5C%5C%0Af(t)%0A%3D%20%5Cfrac%7Ba'_0%7D%7B2%7D%20%2B%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Da_n%5Ccos%20%5Cfrac%7Bn%5Cpi%7D%7BL%7Dt%2B%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Db_n%5Csin%20%5Cfrac%7Bn%5Cpi%7D%7BL%7Dt%20%20%20%5C%5C%20%0Aa'_0%3D%5Cfrac%7B1%7D%7BL%7D%5Cint%5EL_%7B-L%7Df(t)dt%20%5C%5C%0Aa_n%3D%5Cfrac%7B1%7D%7BL%7D%5Cint%5EL_%7B-L%7Df(t)%5Ccos%20%5Cfrac%7Bn%5Cpi%7D%7BL%7Dtdt%5C%5C%20%20%0Ab_n%3D%5Cfrac%7B1%7D%7BL%7D%5Cint%5EL_%7B-L%7Df(t)%5Csin%20%5Cfrac%7Bn%5Cpi%7D%7BL%7Dtdt

在工程上 时间通常不会是负数  t%3E0  , 周期为 T%3D2L%09%2C%5Comega%20%3D%5Cfrac%7B%5Cpi%7D%7BL%7D%20%3D%5Cfrac%7B2%5Cpi%7D%7BT%7D

%5Cint%5EL_%7B-L%7D%20%5Crightarrow%20%5Cint_0%5E%7B2L%7Ddt%5Crightarrow%20%5Cint%5ET_0%20t

于是我们得到傅里叶工程表达

f(t)%3Df(t%2B2L)%2CT%3D2L%20%2C%5Comega%20%3D%5Cfrac%7B%5Cpi%7D%7BL%7D%20%3D%5Cfrac%7B2%5Cpi%7D%7BT%7D%5C%5C%0Af(t)%0A%3D%20%5Cfrac%7Ba'_0%7D%7B2%7D%20%2B%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Da_n%5Ccos%20n%5Comega%20t%2B%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Db_n%5Csin%20n%5Comega%20t%20%0A%20%5C%5C%20%20%0Aa'_0%3D%5Cfrac%7B2%7D%7BT%7D%5Cint%5ET_0f(t)dt%20%5C%5C%20%20%0Aa_n%3D%5Cfrac%7B2%7D%7BT%7D%5Cint%5ET_0f(t)%5Ccos%20n%5Comega%20tdt%5C%5C%20%20%0Ab_n%3D%5Cfrac%7B2%7D%7BT%7D%5Cint%5ET_0f(t)%5Csin%20n%5Comega%20tdt

那么如果此时T 变为无限大,即函数已经不是周期函数了,或者说 全局只有一个周期的函数 ;

傅里叶级数的复数表达形式

以上述工程表达形式为例  

连接复数以及三角可使用欧拉公式作中介

e%5E%7Bi%5Ctheta%7D%20%3D%20%5Ccos%5Ctheta%20%2Bi%5Csin%5Ctheta%20%5C%5C%0A%5Ccos%5Ctheta%3D%5Cfrac%7B1%7D%7B2%7D(e%5E%7Bi%5Ctheta%7D%2Be%5E%7B-i%5Ctheta%7D)%20%5C%5C%0A%5Csin%5Ctheta%3D-%5Cfrac%7B1%7D%7B2%7Di(e%5E%7Bi%5Ctheta%7D-e%5E%7B-i%5Ctheta%7D)

带入上述的工程表达得到傅里叶级数的复数表达

f(t)%20%5C%5C%3D%0A%5Cfrac%7Ba'_0%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B2%7D%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Da_n(e%5E%7Bin%5Comega%20t%7D%2Be%5E%7B-in%5Comega%20t%7D)%2B%5Cfrac%7B-1%7D%7B2%7Di%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7Db_n(e%5E%7Bin%5Comega%20t%7D-e%5E%7B-in%5Comega%20t%7D)%20%5C%5C%3D%0A%5Cfrac%7Ba'_0%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B2%7D%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7D%20(a_n-ib_n)e%5E%7Bin%5Comega%20t%7D%20%2B%5Cfrac%7B1%7D%7B2%7D%5Csum%5Climits%5E%5Cinfty_%7Bn%3D1%7D(a_n%2Bib_n)e%5E%7B-in%5Comega%20t%7D

观察上述式子 , 将第三项的n的范围改变符号 得到 %5Cfrac%7B1%7D%7B2%7D%5Csum%5Climits%5E%7B-1%7D_%7Bn%3D-%5Cinfty%7D(a_%7B-n%7D%2Bib_%7B-n%7D)e%5E%7Bin%5Comega%20t%7D

此时可以发现n的取值成了n%5Cin(-%5Cinfty%2C%5Cinfty),出现了可以合并的项e%5E%7Bin%5Comega%20t%7D,最后式子就变为%5Csum%5Climits%5E%7B%5Cinfty%7D_%7B-%5Cinfty%7DC_n%20e%5E%7Bin%5Comega%20t%7D

于是

f(t)%3D%5Csum%5Climits%5E%7B%5Cinfty%7D_%7B-%5Cinfty%7DC_n%20e%5E%7Bin%5Comega%20t%7D%20%20%20%0A%5C%5C%20%20%0A%5Cbegin%7Bequation%7D%0AC_n%3D%0A%5Cbegin%7Bcases%7D%0A%5Cfrac%7Ba_0%7D%7B2%7D%20%2C%20n%3D0%20%5C%5C%0A%5Cfrac12(a_n-ib_n)%2Cn%3D1%2C2%2C3%2C...%20%5C%5C%0A%5Cfrac12(a_%7B-n%7D%2Bib_%7B-n%7D)%2Cn%3D-1%2C-2%2C3%2C...%20%5C%5C%0A%5Cend%7Bcases%7D%0A%5Cend%7Bequation%7D

然后将原先傅里叶级数代入,我们就会有惊奇的发现

n%3D0%20%5Crightarrow%20%20C_0%20%3D%5Cfrac%7Ba_0%7D%7B2%7D%20%3D%20%5Cfrac1T%20%5Cint%5Et_0f(t)dt%20%3D%5Cfrac1T%5Cint%5ET_0f(t)e%5E%7B-i0%5Comega%20t%7Ddt%20%20

%0An%3D1%2C2%2C...%20%5Crightarrow%20C_n%20%3D%5Cfrac12(a_n-ib_n)%20%5C%5C%3D%0A%5Cfrac12%5B%20%20%5Cfrac2T%20%5Cint%5ET_0%20f(t)%5Ccos%20n%5Comega%20t%20dt%20-%20i%20%5Cfrac2T%20%5Cint%5ET_0%20f(t)%5Csin%20n%5Comega%20t%20dt%20%5D%20%5C%5C%3D%0A%5Cfrac1T%5Cint%5ET_0f(t)%5B%5Ccos%20n%5Comega%20t-i%5Csin%20n%5Comega%20t%5Ddt%20%5C%5C%3D%0A%5Cfrac1T%5Cint%5ET_0f(t)%5B%5Ccos%20(-n%5Comega%20t)%2Bi%5Csin%20(-n%5Comega%20t)%5Ddt%20%5C%5C%3D%0A%5Cfrac1T%5Cint%5ET_0f(t)e%5E%7B-in%5Comega%20t%7Ddt%20%0A

%0An%3D-1%2C-2%2C...%20%5Crightarrow%20C_n%20%3D%5Cfrac12(a_%7B-n%7D%2Bib_%7B-n%7D)%20%5C%5C%3D%0A%5Cfrac12%5B%20%20%5Cfrac2T%20%5Cint%5ET_0%20f(t)%5Ccos%20(-n%5Comega%20t%20)dt%20%2B%20i%20%5Cfrac2T%20%5Cint%5ET_0%20f(t)%5Csin%20(-n%5Comega%20t)%20dt%20%5D%20%5C%5C%3D%0A%5Cfrac1T%5Cint%5ET_0f(t)%5B%5Ccos%20n%5Comega%20t-i%5Csin%20n%5Comega%20t%5Ddt%20%5C%5C%3D%0A%5Cfrac1T%5Cint%5ET_0f(t)%5B%5Ccos%20(-n%5Comega%20t)%2Bi%5Csin%20(-n%5Comega%20t)%5Ddt%20%5C%5C%3D%0A%5Cfrac1T%5Cint%5ET_0f(t)e%5E%7B-in%5Comega%20t%7Ddt%20%0A

因此完全可以使用一个式子来表达这系数内涵的三项,此时复数形式的傅里叶级数变得非常简单;

f(t)%3Df(t%2BT)%2C%5Comega%20%3D%20%5Cfrac%7B2%5Cpi%7DT%5C%5C%0Af(t)%3D%5Csum%5Climits%5E%7B%5Cinfty%7D_%7B-%5Cinfty%7DC_n%20e%5E%7Bin%5Comega%20t%7D%20%20%5C%5C%20%0AC_n%3D%5Cfrac1T%20%5Cint%5ET_0f(t)e%5E%7B-in%5Comega%20t%7Ddt

傅里叶变换 FT

我们已经得到了傅里叶级数的复数表达;

上述函数原表达,求和式,以及系数式

其求和式中%5Csum%5Climits%5E%5Cinfty_%7B-%5Cinfty%7De%5E%7Bin%5Comega_0%20t%7D 两者 对于任意的傅里叶级数都是一样,已经是一种固定规则了,仅仅由C_n来决定不同样式的傅里叶级数,这系数是一个复数;

其实把求和式展开,%20...%20%2B%20c_%7B-1%7De%5E%7B-i(-1)%5Comega_0%20t%7D%2B%20c_%7B0%7De%5E0%2B%20c_1%20e%5E%7Bi(1)%5Comega_0%20t%7D%2B%20c_2e%5E%7B-i(2)%5Comega_0%20t%7D%20%2B... , 表现为如下右图;

时域频域图

就上图来说,左边在工程中总是称为时域,毕竟和事件有关,右侧表达的是系数在不同频率下的大小不同,即每次都以某个频率作为基础,作加权,并对其各频率加权结果之总和就是原函数;

上述是周期函数的情况;

那么如果一个函数不是周期函数,或者说整个函数就一个周期?

那么其周期就趋于无穷,此时就成了一般函数 %5Clim%5Climits_%7BT%5Cto%5Cinfty%7Df_T(t)-f(t)%20

对基频率来说 T%20%5Cto%20%5Cinfty%20,此时%5CDelta%5Comega%20%3D%20(n%2B1)%5Comega_0-n%5Comega_0%3D%5Comega_0%20%3D%20%5Cfrac%7B2%5Cpi%7DT%20周期增加导致频率间隔变小,当趋于无穷则频率间隔无限小;此时我们可以将傅里叶级数频率的离散情况,转为连续情况,即各个有微小差异的频率稠密的顺序排在一起组成了频率函数(离散级数成连续函数);

把系数式代入求和式  得到 混合式:

f_T(t)%3D%5Csum%5Climits%5E%7B%5Cinfty%7D_%7Bn%3D-%5Cinfty%7D%5Cfrac1T%20%5Cint%5E%7B%5Cfrac%20T2%7D_%7B-%5Cfrac%20T2%7Df_T(t)e%5E%7B-in%5Comega_0%20t%7Ddt%20e%5E%7Bin%5Comega_0%20t%7D%2C%5Cfrac1T%3D%5Cfrac%7B%5CDelta%5Comega%7D%7B2%5Cpi%7D%EF%BC%8CT%20%5Cto%20%5Cinfty

可见当周期无限时会出现如下情况:

%20%20%5Cint%5E%7B%5Cfrac%20T2%7D_%7B-%5Cfrac%20T2%7D%20dt%20%5Cto%20%5Cint%5E%5Cinfty_%7B-%5Cinfty%7D%20dt%20%5C%5C%0A%20%20%20n%5Comega_0%20%5Cto%20%5Comega%20%20%5C%5C%0A%5Csum%5Climits%5E%7B%5Cinfty%7D_%7Bn%3D-%5Cinfty%7D%5CDelta%5Comega%5Cto%20%5Cint%5E%7B%5Cinfty%7D_%7B-%5Cinfty%7Dd%5Comega

将这些变化代入上述混合式得到:

%5Cfrac1%7B2%5Cpi%7D%20%5Cint%5E%5Cinfty_%7B-%5Cinfty%7D%5Cint%5E%5Cinfty_%7B-%5Cinfty%7Df(t)e%5E%7B-i%5Comega%20t%7D%20dt%20%5C%20%20e%5E%7Bi%5Comega%20t%7D%20d%5Comega

而整体拿出来 就是傅里叶逆向变换 IFT

f(t)%3D%5Cfrac1%7B2%5Cpi%7D%20%5Cint%5E%5Cinfty_%7B-%5Cinfty%7DF(%5Comega)%20e%5E%7Bi%5Comega%20t%7D%20d%5Comega

傅里叶变换简化写法就是拉普拉斯变换 Lplace-Transform   LT

F(S)%3D%5Cint%5E%5Cinfty_%7B-%5Cinfty%7Df(t)e%5E%7B-S%20t%7D%20dt

 


工程数学附录_傅里叶级数与傅里叶变换的评论 (共 条)

分享到微博请遵守国家法律