就一视频 有关三角恒等式 命题之证明
命题1.
有
sin80°=cos10°
即
2sin40°cos40°=cos10°
即
sin40°cos40°=1/2cos10°
即
2sin20°cos20°cos40°=1/2cos10°
即
sin20°cos20°cos40°=1/4cos10°
即
2sin10°cos10°cos20°cos40°=1/4cos10°
即
sin10°cos20°cos40°=1/8
即
sin10°sin50°sin70°=1/8
即
sin10°sin30°sin50°sin70°=1/16
得证
命题2.
sin20°+sin40°
=2sin30°cos(-10°)
=cos10°
=sin80°
得证
命题3.
sin(α+β)sin(α-β)
=
(sinαcosβ+cosαsinβ)(sinαcosβ-cosαsinβ)
=
sin²αcos²β-cos²αsin²β
=
sin²αcos²β+sin²α(1-cos²β)
-(cos²αsin²β+sin²α(1-cos²β))
=
sin²αcos²β+sin²α(1-cos²β)
-(cos²αsin²β+sin²αsin²β)
=
sin²α-sin²β
得证