化工厂废气燃烧处理设备

化工厂废气燃烧处理设备,催化燃烧废气净化装置,催化燃烧设备工作原理,催化燃烧设备的特色:起燃温度低,节省能源废气催化燃烧与直接燃烧比较,具有起燃温度低,能耗也小的显著特色。在某些情况下,到达起燃温度后便无需外界供热。催化燃烧设备催化剂的功能指标:在空速较高,温度较低的条件下,废气的燃烧反响转化率挨近100%,标明该催化剂的活性较高。催化剂的活性分诱导活化、安稳、变老失活3个阶段,有运用限期,工业上有用催化剂的寿命一般在2年以上。运用期的长短与较好活性结构的安稳性有关,而安稳性取决于耐热、抗毒的才能。催化燃烧设备对催化燃烧所用催化剂则要求具有较高的耐热和抗毒的功能。废气的催化燃烧一般不会在很严厉的操作条件下进行,这是因为废气的浓度、流量、成分等往往不安稳,因此要求催化剂具有较宽的操作条件适应性。催化燃烧工艺的操作空速较大,气流对催化剂的冲击力较强,一起因为床层温度会升降,构成热胀冷缩,易使催化剂载体决裂,因此催化剂要具有较大的机械强度和杰出的抗热胀冷缩功能。

催化燃烧设备的性能要求,催化燃烧是用催化剂使废气中可燃物质在较低温度下氧化分解的净化方法。所以,催化燃烧又称为催化化学转化。由于催化剂加速了氧化分解的历程,大多数碳氢化合物在300度到450度的温度时,通过催化剂就可以氢化。
1、活性高。催化剂的活性好坏直接影响催化燃烧的化学转化率。而转化率不仅与催化活性材料自身的活性有关,而且与催化载体的物理形状有着直接关系。所以,在选择适应的催化活性材料的同时,还考虑催化载体的物理形状,催化剂有较高的活性,达到催化燃烧净化的目的。
2、热稳定性好。由于废气的温度随时变化,如果催化剂不能适应范围内的温度变化,催化剂的性能就会下降,净化效率就会降低。因此,催化剂具备适应范围内的温度变化。
3、。在催化燃烧过程中,催化剂往往会因高温、振动和气流等因素的作用,使催化剂产生破裂和磨损,破裂和磨损会造成催化剂的活性降低,增加催化剂床层的压降,影响净化效果。
4、寿命长。催化活性材料大都比较昂贵,所以,设计时选用催化剂时应尽量使用寿命较长的催化剂。

活性炭吸附、脱附+催化燃烧是新一代VOCs处理设备,是将吸附浓缩单元和热氧化单元有机地结合起来的一种方法,主要适用于较低浓度有机气体且不宜采用直接燃烧或催化燃烧法和吸附回收法处理的有机废气,尤其对大风量的处理场合,均可获得满意的经济效果和社会效果。经吸附净化并脱附后转换成小风量、高浓度的有机废气,对其进行热氧化处理,并将有机物燃烧释放的热量有效利用。
1、设备原理:
活性炭吸附脱附催化燃烧废气处理设备设计采用蜂窝状活性炭为吸附剂,结合吸附净化、脱附再生并浓缩VOCs和催化燃烧的原理,即将大风量、低浓度的有机废气通过蜂窝状活性炭吸附以达到净化空气的目的,当活性炭吸附饱和后再用热空气脱附使活性炭得到再生,脱附出浓缩的有机物被送往催化燃烧床进行催化燃烧,有机物被氧化成无害的CO2和H2O,燃烧后的热废气通过热交换器加热冷空气,热交换后降温的气体部分排放,部分用于蜂窝状活性炭的脱附再生,达到废热利用和节能的目的。整套装置由预滤器、吸附床、催化燃烧床、阻燃器、相关的风机、阀门等组成。
2、工艺流程:
设计有三个进口,因此吸附床可采用一种多单元分流组合结构,并采用PLC控制系统来实现整个系统的连续运行,活性炭吸附脱附催化燃烧工艺连续运行的流程图,整个系统集吸附、脱附、催化燃烧于一体。为保证系统的连续运行,采用4套吸附单元,正常运行时,3个单元处于吸附状态,只有1个单元处于脱附状态,每个单元吸附24 h后依次转入脱附状态,脱附状态为再生活性炭并催化燃烧有机物6h,冷却2 h,共8 h,净化后的气体排入大气中,当某一单元内的活性炭吸附达到预定时间后,打开脱附阀门,利用电加热器将气体加热,热风进行脱附,脱附出来约50度的高浓度有机废气预热到250度,进到催化床燃烧分解为CO2和H2O,催化反应后的高温气体约350 度通过列管热交换器将热量传递给后面脱附的气体,使其从上升至250度左右从而进行催化燃烧。排出的净化气体CG和H20少部分与新鲜空气混合后成80度脱附热风返回吸附床进行脱附,其余的净化气体经管道排放至大气中。

3、工艺优点:
(1)吸附床气流层分布均匀、稳定、压降小,吸附性能好。本工艺采用吸附性能好、气流阻力小的蜂窝状活性炭,应用于大风量有机废气的治理,不仅能满足吸附净化的要求,而且使吸附装置小型化、阻力低,用中、低压风机就能满足排风要求,降低了能耗和噪音污染。创达环保废气治理!
(2)利用余热,节能显著。通过蜂窝状活性炭的吸附浓缩作用,创达环保将大风量、低浓度的有机废气转换成小风量、高浓度的有机废气,后者浓度可达0.9-1.5g/m3,可在催化燃烧床上保持稳定的自燃烧状态,转变成无害的CO2和H2O,一次启动后无需外加热,燃烧后的热废气又用于对蜂窝状活性炭的脱附再生,达到了废热利用、有机物处理彻底的目的。
(3)处理风量范围大。处理风量由每小时数千立方米到数十万立方米,具有净化效率高、无二次污染、运行成本低等优点。
