当处理组数为两组时方差分析结果与t检验的结果是【完全等价且t²=F】的简易推导
对同一计量资料,当处理组数为两组时方差分析结果与t检验的结果是
A.方差分析的结果更可靠
B.t检验的结果更可靠
C.完全等价且√t=F
D.完全等价且t²=F
E.理论上不同
∵v间=2-1=1,v内=n-2=n1+n2-2
∴F=MS间/MS内=(SS间/v间)/(SS内/v内)
=[n1×(x1拔-x拔)²+n2×(x2拔-x拔)²]/[∑∑(xij-xi拔)²/(n1+n2-2)]
=[n1×(x1拔-x拔)²+n2×(x2拔-x拔)²]/{[∑(x1i-x1拔)²+∑(x2i-x2拔)²]/(n1+n2-2)}
t²=(x1拔-x2拔)²/{[(1/n1)+(1/n2)]×[(n1-1)×S1²+(n2-1)×S2²]/(n1+n2-2)}
=(x1拔-x2拔)²/[(1/n1)+(1/n2)]×1/{[∑(x1i-x1拔)²+∑(x2i-x2拔)²]/(n1+n2-2)}
要证明t²=F,只需要证明n1×(x1拔-x拔)²+n2×(x2拔-x拔)²=(x1拔-x2拔)²/[(1/n1)+(1/n2)]
n1×(x1拔-x拔)²+n2×(x2拔-x拔)²
=n1×(x1拔²-2×x1拔×x拔+x拔²)+n2×(x2拔²-2×x2拔×x拔+x拔²)
=n1×x1拔²+n2×x2拔²-2×n1×x1拔×x拔-2×n2×x2拔×x拔+(n1+n2)×x拔²
=n1×x1拔²+n2×x2拔²-2×x拔×(n1×x1拔+n2×x2拔)+(n1+n2)×x拔²
=n1×x1拔²+n2×x2拔²-2×x拔×(n1+n2)×x拔+(n1+n2)×x拔²
=n1×x1拔²+n2×x2拔²-(n1+n2)×x拔²
=n1×x1拔²+n2×x2拔²-(n1+n2)×[(n1×x1拔+n2×x2拔)/(n1+n2)]²
=n1×x1拔²+n2×x2拔²-(n1×x1拔+n2×x2拔)²/(n1+n2)
=[n1×x1拔²×(n1+n2)+n2×x2拔²×(n1+n2)-(n1×x1拔+n2×x2拔)²]/(n1+n2)
=[n1×x1拔²×(n1+n2)+n2×x2拔²×(n1+n2)-n1²×x1拔²-n2²×x2拔²-2×n1×n2×x1拔×x2拔]/(n1+n2)
=[n1×n2×x1拔²+n1×n2×x2拔²-2×n1×n2×x1拔×x2拔]/(n1+n2)
=[(n1×n2)/(n1+n2)]×(x1拔-x2拔)²
=(x1拔-x2拔)²/[(1/n1)+(1/n2)]
即t²=F
