欢迎光临散文网 会员登陆 & 注册

[Geometry] Lunes of Hippocrates

2021-09-21 13:22 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (郑涛)

【Problem】

Hippocrates of Chios (c. 470 – c. 410 BCE) was an ancient Greek mathematician who worked on the classical problems of “squaring the circle” and “doubling the cube”. The “Lune of Hippocrates” originates from Hippocrates’s attempt of squaring the circle. Let X be the area of the lune (region shaded in orange), and Y be the area of the right triangle (region shaded in blue). What is the ratio of the two areas?

【Solution】

Let X be the area of the lune, and Y%20 the area right triangle ABO.  Since the right triangle ABO is isosceles, AO%20%3D%20BO%20%3D%20r  and  AB%20%3D%20%5Csqrt%7B2%7Dr. Hence, the area of the right triangle is

Y%20%3D%20%5Cfrac%7Br%5E2%7D%7B2%7D

To determine the area of the lune, subtract the area of the unshaded region between the lune and the right triangle from the semicircle of diameter AB.

X%3D%5Cfrac%7B%5Cpi%20r%5E2%7D%7B4%7D-%5Cleft(%5Cfrac%7B%5Cpi%20r%5E2%7D%7B4%7D-%5Cfrac%7Br%5E2%7D%7B2%7D%20%5Cright)

X%20%3D%20%5Cfrac%7Br%5E2%7D%7B2%7D

Therefore, X%3DY.



[Geometry] Lunes of Hippocrates的评论 (共 条)

分享到微博请遵守国家法律