视频BV18V411t7nU解析
令x²=t
f(t)=(at+b)/(ct+d)
a/c≠b/d
t≥0
若-d/c>0
则f(t)分别在
[0,-d/c)与(-d/c,+∞)连续且单调
且t→-d/c,f(t)→∞
t→+∞,f(t)→a/c
f(0)=b/d
故
若b/d<a/c
f(t)值域为(-∞,b/d]∪(a/c,+∞)
若b/d>a/c
f(t)值域为(-∞,a/c)∪[b/d,+∞)
令x²=t
f(t)=(at+b)/(ct+d)
a/c≠b/d
t≥0
若-d/c>0
则f(t)分别在
[0,-d/c)与(-d/c,+∞)连续且单调
且t→-d/c,f(t)→∞
t→+∞,f(t)→a/c
f(0)=b/d
故
若b/d<a/c
f(t)值域为(-∞,b/d]∪(a/c,+∞)
若b/d>a/c
f(t)值域为(-∞,a/c)∪[b/d,+∞)