雾切息灾池,两个都想要,定轨谁?数学证明
设定息灾 最好情况直接两个都出的概率是 雾息0.75*0.5*0.75*0.5=0.140625 息雾同上 以下用简称, 息常雾0.75*0.5*0.25*0.5=0.046875 息常息雾0.75*0.5*0.25*0.5=0.046875 雾雾息0.75*0.5*0.75*0.5=0.052734375 雾常息0.75*0.5*0.25=0.09375 常雾息0.25*0.5=0.125 常息雾0.25*0.5*0.75*0.5=0.046875 常息息息雾0.25*0.5*0.75*0.5*0.75*0.5=0.017578125 常息息雾0.25*0.5*0.75*0.5*0.75*0.5=0.017578125 以上 无论定轨谁,都能抽到的概率是相同的,因此,不考虑抽取的具体次数(如果需要进一步计算,也可以用金数当权数加权,求期望抽数,这里我就不算了) 2*0.140625+0.046875+2*0.046875+0.0527343+0.09375+0.125+0.046875+3*0.017578125+2*0.017578125=0.828124925 2*0.140625+0.046875+2*0.052734375+0.09375+0.125+0.046875+0.017578125+0.017578125=0.734375 计算得定轨息灾 抽取息灾的期望为0.828124925 雾切期望为0.734375 结论为:更能接受两把雾切的倾向于定轨雾切 更能接受两把息灾的(?,我也不知道为什么)倾向于定轨息灾 设为定轨雾切的结论也是一样的,就不算了 是与定轨同向的,符合直觉和期待