欢迎光临散文网 会员登陆 & 注册

凝聚态场论常用公式(9):Landau能级的对称规范与代数解法

2023-03-26 19:51 作者:打电动的阿伟嘻嘻嘻  | 我要投稿

对无相互作用的二维电子气,施加强磁场,同时限制对称性为:旋转对称性.    

考虑对称规范:A_x%3D%5Cfrac%7BB%7D%7B2%7Dy%2C%5C%20A_y%3D-%5Cfrac%7BB%7D%7B2%7Dx%2C%5C%20A_z%3D0.

可以验证其哈密顿量满足旋转不变性(证明略):

%5Chat%7BH%7D%3D%5Cfrac%7B1%7D%7B2m%7D%5B(%5Chat%7Bp%7D_x-%5Cfrac%7BeB%7D%7B2c%7Dy)%5E2%2B(%5Chat%7Bp%7D_y%2B%5Cfrac%7BeB%7D%7B2c%7Dx)%5E2%5D.

我们使用代数解法求解,首先必须声明的是,以下所有的计算必须化为 x%2C%5Chat%7Bp%7D_x%2Cy%2C%5Chat%7Bp%7D_y 的表象下才有意义,并利用 %5Bx%2C%5Chat%7Bp%7D_x%5D%3D%5By%2C%5Chat%7Bp%7D_y%5D%3Di 才能得到算符量子化公式,但是一些计算也利用了复变函数偏导的技巧.

a_0%3D(%5Cfrac%7B%5Chbar%20c%7D%7BeB%7D)%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%2Cz%3D%5Cfrac%7B1%7D%7B2a_0%7D(x%2Biy)%2C%5C%20z%5E%7B%5Cast%7D%3D%5Cfrac%7B1%7D%7B2a_0%7D(x-iy).

利用复变函数导数定义(这里的计算需要仔细用定义去算,不是笔误):

%5Cpartial_z%3Da_0%5B%5Cpartial_x-i%5Cpartial_y%5D%2C%5C%20%5Cpartial_%7Bz%5E%7B%5Cast%7D%7D%3Da_0%5B%5Cpartial_x%2Bi%5Cpartial_y%5D.(注意在位置动量表象下(%5Cpartial_z)%5E%7B%5Cast%7D%3D-%5Cpartial_%7Bz%5E%7B%5Cast%7D%7D.)

定义能量升降算符a%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D(z%2B%5Cpartial_%7Bz%5E%7B%5Cast%7D%7D)%2Ca%5E%7B%5Cdagger%7D%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D(z%5E%7B%5Cast%7D-%5Cpartial_z)%2C%5C%20%5Chat%7Bn%7D%3Da%5E%7B%5Cdagger%7Da.

可以计算得到%5Chat%7BH%7D%3D%5Chbar%5Comega_c(%5Chat%7Bn%7D%2B%5Cfrac%7B1%7D%7B2%7D)%2C%5C%20%5Ba%2Ca%5E%7B%5Cdagger%7D%5D%3D1.

类比能量升降算符,定义z方向角动量升降算符b%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D(z%5E%7B%5Cast%7D%2B%5Cpartial_z)%2C%5C%20b%5E%7B%5Cdagger%7D%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D(z-%5Cpartial_%7Bz%5E%7B%5Cast%7D%7D).

可以计算得到%5Bb%2Cb%5E%7B%5Cdagger%7D%5D%3D1%2C%5Bb%2Ca%5E%7B%5Cdagger%7D%5D%3D%5Bb%2Ca%5D%3D0.

设其本征态为%5Cpsi_%7Bnm%7D%3A%5C%20%5Chat%7BH%7D%5Cpsi_%7Bnm%7D%3D%5Chbar%5Comega_c(n%2B%5Cfrac%7B1%7D%7B2%7D)%5Cpsi_%7Bnm%7D%2C%5C%20b%5E%7B%5Cdagger%7Db%5Cpsi_%7Bnm%7D%3Dm%5Cpsi_%7Bnm%7D.

利用代数方法求其本征态的表达式:

a%5Cpsi_%7B0m%7D%3D0%5CRightarrow(z%2B%5Cpartial_%7Bz%5E%7B%5Cast%7D%7D)%5Cpsi_%7B0m%7D%3D0%5CRightarrow%5Cpsi_%7B00%7D%3D%7B%5Crm%20Const%7D%5C%20e%5E%7B-zz%5E%7B%5Cast%7D%7D.

%5Cpsi_%7B0m%7D%3D%7B%5Crm%20Const%7D%5C%20(b%5E%7B%5Cdagger%7D)%5Em%5Cpsi_%7B00%7D%3D%7B%5Crm%20Const%7D%5C%20z%5Eme%5E%7B-zz%5E%7B%5Cast%7D%7D.

考虑z方向的角动量算符 %5Chat%7BL%7D_z%3D-i%5Chbar%5Bx%5Cpartial_y-y%5Cpartial_x%5D%3D%5Chbar%5Bz%5Cpartial_z-z%5E%7B%5Cast%7D%5Cpartial_%7Bz%5E%7B%5Cast%7D%7D%5D.

可以计算得到%5Chat%7BL%7D_z%5Cpsi_%7B0m%7D%3D%5Chbar%20m%5Cpsi_%7B0m%7D.

设m的上限M,接下来求解m=M态,此过程实际上是确定m的上界,此物理图像极其重要!此物理图像极其重要!此物理图像极其重要!

考虑m=M态的 %5Cfrac%7B1%7D%7B4a_0%5E2%7D%3Cx%5E2%2By%5E2%3E%3D%5Cfrac%7B%5Cint(zz%5E%7B%5Cast%7D)%5EMe%5E%7B-2zz%5E%7B%5Cast%7D%7Dz%5E%7B%5Cast%7Dz%5C%20dz%5C%20dz%5E%7B%5Cast%7D%7D%7B%5Cint(zz%5E%7B%5Cast%7D)%5EMe%5E%7B-2zz%5E%7B%5Cast%7D%7D%5C%20dz%5C%20dz%5E%7B%5Cast%7D%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7B%5CGamma(M%2B2)%7D%7B%5CGamma(M%2B1)%7D%3D%5Cfrac%7BM%2B1%7D%7B2%7D%2C

%E5%85%B6%E4%B8%AD%E5%88%A9%E7%94%A8%E4%BA%86zz%5E%7B%5Cast%7D%3D(x%5E2%2By%5E2)%3Dr%5E2%5Cin(0%2C%2B%5Cinfty).

M%5Cgg1%E6%97%B6%2C%5C%20M%3D%5Cfrac%7BB%5Ccdot%20%7B%5Crm%20Area%7D%7D%7B%5Cfrac%7Bhc%7D%7Be%7D%7D%3D%5Cfrac%7B%5CPhi%7D%7B%5CPhi_0%7D.

可以验证b%5E%7B%5Cdagger%7Db%3Da%5E%7B%5Cdagger%7Da%2B%5Cfrac%7B1%7D%7B%5Chbar%7D%5Chat%7BL%7D_z%2C%5C%20%5Chat%7BL_z%7D%5Cpsi_%7Bnm%7D%3D%5Chbar(m-n)%5Cpsi_%7Bnm%7D%2C%5C%20%5B%5Chat%7BL%7D_z%2Cb%5D%3D-%5Chbar%20b%2C%5C%20%5B%5Chat%7BL%7D_z%2Cb%5E%7B%5Cdagger%7D%5D%3D%5Chbar%20b%5E%7B%5Cdagger%7D.

波函数及第一Landau能级的特例为:

%5Cpsi_%7Bnm%7D%3D%7B%5Crm%20Const%7D%5C%20(b%5E%7B%5Cdagger%7D)%5Em(a%5E%7B%5Cdagger%7D)%5En%5Cpsi_%7B00%7D%2C

%5Cpsi_%7B0m%7D%3D%7B%5Crm%20Const%7D%5C%20z%5Eme%5E%7B-z%5E%7B%5Cast%7Dz%7D%2Cm%3D1%2C2%2C%5Ccdots%2CM.

对于z方向角动量的分量m,这里给出如下物理图像(十分重要):随着磁场的增大,样品磁通量每增加一个磁通量子的量,就会是m的上界M增加1.



在之后会看到,如此“平庸”的一个图像,将会爆发出怎么样的魅力。

凝聚态场论常用公式(9):Landau能级的对称规范与代数解法的评论 (共 条)

分享到微博请遵守国家法律