什么学科最难科普?

证明三角形的内角和是180度。




已知:如图,已知△ABC,求证:∠A+∠B+∠C=180°.

证明方法1:
解:如图1所示,延长BC到E,作CD∥AB.
∵AB∥CD(已作),
∴∠1=∠A(两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).
又∵∠ACB+∠1+∠2=180°(平角定义),
∴∠ACB+∠A+∠B=180°(等量代换).

主要利用的知识点为平行线的性质,两直线平行,同位角相等、内错角相等,以及平角的定义。
证明方法2:
解:如图2所示,在BC边上任取一点D,作DE∥AB,交AC于E,DF∥AC,交AB于点F.
∵DF∥AC(已作),
∴∠1=∠C(两直线平行,同位角相等),
∠2=∠DEC(两直线平行,内错角相等).
∵DE∥AB(已作).
∴∠3=∠B,∠DEC=∠A(两直线平行,同位角相等).
∴∠A=∠2(等量代换).
又∵∠1+∠2+∠3=180°(平角定义),
∴∠A+∠B+∠C=180°(等量代换).

在三角形内部构造了平行四边形,由于还未学习平行四边形的知识点,本题仍然使用平行线的性质进行证明。
证明方法3:
解:如图3所示,过A点任作直线l1,过B点作l2∥l1,过C点作l3∥l1,
∵l1∥l3(已作).
∴∠l=∠2(两直线平行,内错角相等).
同理∠3=∠4.
又∵l1∥l2(已作),
∴∠5+∠1+∠6+∠4=180°(两直线平行,同旁内角互补).
∴∠5+∠2+∠6+∠3=180°(等量代换).
又∵∠2+∠3=∠ACB,
∴∠BAC+∠ABC+∠ACB=180°(等量代换).

通过构造平行线拐角模型进行证明。
证明方法4:
如图4,将ΔABC的三个内角剪下,拼成以C为顶点的平角.

证明方法5:
如图5-1和图5-2,在图5-1中作∠1=∠A,得CD∥AB,有∠2=∠B;在图5-2中过A作MN∥BC有∠1=∠B,∠2=∠C,进而将三个内角拼成平角.

解:如图5-2中,过点A作MN∥BC
∴∠1=∠B(两直线平行,内错角相等);∠2=∠C(两直线平行,内错角相等);
又∵∠1+∠BAC+∠2=180°(平角的定义)
∴∠B+∠BAC+∠C=180°(等量代换)
【证明过程见:
https://baijiahao.baidu.com/s?id=1681600623135640499&wfr=spider&for=pc&searchword=%E4%B8%89%E8%A7%92%E5%BD%A2%E5%B9%B3%E8%A1%8C%E7%BA%BF%E5%86%85%E8%A7%92%E5%92%8C】