欢迎光临散文网 会员登陆 & 注册

有限元建模与分析:介绍与步骤

2021-08-13 11:06 作者:医学力学有限元分析  | 我要投稿

有限元分析(FEA)是一种预测结构的偏移与其它应力影响的过程,有限元建模(FEM)将这个结构分割成单元网格以形成实际结构的模型,每个单元具有简单形态(如正方形或三角形)。这样有限元程序就有了可写出在刚度矩阵结构中控制方程方面的信息。每个单元上的未知量就是在节点上的位移,这个点就是单元元的连接点。有限元程序将这些单个单元的刚度矩阵组合起来以形成整个模型的总刚度矩阵,并给予已知力和边界条件来求解该刚度矩阵以得出未知位移,从节点上位移的变化就可以计算出每个单元中的应力。


有限单元由假定的应变方程式导出,有些单元可假设其应变是常量,而另外一些可采用更高阶的函数。利用给定单元的这些方程和实际几何体,则可以写出外力和节点位移之间的平衡方程。对于单元的每个节点来说,每个自由度就有一个方程,这些方程被十分便利地写成矩阵的形式以用于计算机的演算中,这个系数的矩阵就变成了一个显示出力对位移的关系的刚度矩阵: {F}=[K]、{d}


尽管求知量处于离散的自由度,内部方程仍被写成表述为连续集的应变函数。这就意味着如果选择了正确单元的话,纵然这个有限元模型有一组离散的方程,只要用有限的节点和单元也可以收敛出正确的答案。


有限元模型是解决全部结构问题的完全理想的模型。这些问题包括节点的定位,单元,物理的和材料的特性,载荷和边界条件,根据分析类型的不同,如静态结构载荷,动态的或热力分析,这个模型就确定得不同。


一个有限元模型常常由不止一种单元类型来建立,有限元模型是以结构的偏移来建立成数学模型,而不只是在外观上象原结构。也许某个零件用梁单元最好,而另外的零件则可能用薄壳单元最理想。


对于给定的问题来讲,求解结果的准确性将取决于结构建模的好坏,负载和边界条件的确定,以及所用单元的精度。


这就是说:“分析的目的在于洞察力而不是数量”。


有限元步骤


三个步骤:前处理(PREPROCESSION),求解(SOLUTION),后处理(POSTPROCESSION)


前处理包括产生一个有限元模型的几何体的全过程,输入物理特性,描述边界条件和载荷,以及检查模型。

求解过程在I-DEASSIMULATION的模型求解模块中进行,或在一个外部有限元分析程序中进行。I-DEAS求解能够解答线性和非线性的,静态的,动态的,屈曲,热传导和势位能分析问题。至于其它类型的分析,有限元模型信息对于一个外部有限元求解问题可写成所要求的格式,如MSC。NSATRAN,ANSYS,ABAQUS等。


后处量包括标绘出偏移和应力,利用失效准则,诸如允许的最大偏移,材质的静态和疲劳强度等等来比较这些结果,假如我们仅仅想知道零件是否能经受住载荷试验。


所有我们需要看到的只是一个是或否的答案,这不是通常那种情况。我们喜欢有能力去看到不同形式显示的结果,这样我们以判断力来判断为什么零件失效和怎样去改进设计。有两个问题在后处理阶段必须作出解答,那就是:模型准确吗?结构满意吗?


在你的模型中,可能有许多错误的根源,例如,有限元网格的粗糙,所用单元的类型,或材料性质的不准确性。这就是为什么后期处理将包括检查那些在建立模型时不可能发觉的错误。你必须进行的一个基本的检查是用某些人工的计算法使你确信在譬如在输入材料性质时,小数点的位置不会发生任何显著的错误,也建议你在观察应力前标绘出位移,因为位移通常比应力更为直观。在继续程序前确认变形的形态正确无误。


边界条件中常的错误可通过细心观察变形形态检测出,诸如某点该动而不动,或被约束的点有不合适的斜度等,在你建模的结构方面作出判断之前确保你的模型免除错误!


有限元建模与分析:介绍与步骤的评论 (共 条)

分享到微博请遵守国家法律