欢迎光临散文网 会员登陆 & 注册

有三深度学习计算机视觉核心方法与实践

2023-03-26 13:55 作者:哦呵呵嬷嬷  | 我要投稿

6. 权重稀疏化(weight sparsification):通过对网络权重引入稀疏性约束,可以大幅度降低网络权重中的非零元素个数;压缩后模型的网络权重可以以稀疏矩阵的形式进行存储和传输,从而实现模型压缩。


7. 权重量化(weight quantization):通过对网络权重引入量化约束,可以降低用于表示每个网络权重所需的比特数;我们同时提供了对于均匀和非均匀两大类量化算法的支持,可以充分利用ARM和FPGA等设备的硬件优化,以提升移动端的计算效率,并为未来的神经网络芯片设计提供软件支持。


8. 网络蒸馏(network distillation):对于上述各种模型压缩组件,通过将未压缩的原始模型的输出作为额外的监督信息,指导压缩后模型的训练,在压缩/加速倍数不变的前提下均可以获得0.5%-2.0%不等的精度提升。


有三深度学习计算机视觉核心方法与实践的评论 (共 条)

分享到微博请遵守国家法律