欢迎光临散文网 会员登陆 & 注册

傅立叶变换的推导

2023-02-28 12:17 作者:啊呜西呜安  | 我要投稿

三角函数系

首先引入傅立叶变换所使用的三角函数系

%5C%7Bsin(0x)%2Ccos(0x)%2Csin(1x)%2Ccos(1x)%2Csin(2x)%2Ccos(2x)%2C%5Ccdots%20%2Csin(nx)%2Ccos(nx)%20%20%20%20%20%5C%7D

这组三角函数系像波函数一样具有正交性和完备性,但不是归一的。对于正交性我们可以看到:

%5Cbegin%7Balign%7D%0A%5Cint_%7B-%5Cpi%7D%5E%7B%5Cpi%7D%20sin(x)cos(x)dx%26%3D0%5C%5C%0A%5Cint_%7B-%5Cpi%7D%5E%7B%5Cpi%7D%20sin(nx)cos(mx)%26%3D0%5C%5C%0A%5Cint_%7B-%5Cpi%7D%5E%7B%5Cpi%7D%20cos(mx)cos(mx)%26%3D%5Cpi%0A%5Cend%7Balign%7D%0A%5Ctag%7B1%7D

并且三角函数具有周期性,其周期T%3D2%5Cpi,即f(x)%3Df(x%2B2%5Cpi),见图1。

图1

傅立叶发现周期为2%5Cpi的函数可以展开为一系列三角函数的和的形式,即

%5Cbegin%7Balign%7D%0Af(x)%26%3D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20a_ncos(nx)%2B%5Csum_%7Bn%3D0%7D%5E%5Cinfty%20b_nsin(nx)%5C%5C%0A%26%3Da_0%2B%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%20a_ncos(nx)%2B%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%20sin(nx)%0A%5Cend%7Balign%7D%0A%5Ctag%7B2%7D

现在我们先来求系数a_0,对公式两边同时对x作积分,得

%5Cbegin%7Balign%7D%0A%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20f(x)%20dx%26%3D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20a_0%20dx%2B%5Cint_%7B-%5Cpi%7D%5E%5Cpi%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%20a_n%20cos(nx)dx%20%2B%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Db_nsin(nx)dx%5C%5C%0A%26%3D2%5Cpi%20a_0%2Ba_n%20%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%20%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20cos(0x)cos(nx)dx%2Bb_n%20%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20cos(0x)sin(nx)dx%5C%5C%0A%26%3D2%5Cpi%20a_0%0A%5Cend%7Balign%7D%0A%5Ctag%7B3%7D

这里利用了三角函数的正交性,最后算得

%5Cbegin%7Balign%7D%0Aa_0%3D%5Cfrac%7B1%7D%7B2%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20f(x)dx%0A%5Cend%7Balign%7D%0A%5Ctag%7B4%7D

这时,令a_0%5E%5Cprime%3D2a_0,则公式(2)变为

%5Cbegin%7Balign%7D%0Af(x)%3D%5Cfrac%7Ba_0%5E%5Cprime%7D%7B2%7D%2B%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%20a_n%20cos(nx)%2B%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%20b_n%20sin(nx)%2C%20a_0%5E%5Cprime%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20f(x)dx%0A%5Cend%7Balign%7D%0A%5Ctag%7B5%7D

这里为了表示方便,把"%5Cprime"丢掉,即

%5Cbegin%7Balign%7D%0Af(x)%3D%5Cfrac%7Ba_0%7D%7B2%7D%2B%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%20a_n%20cos(nx)%2B%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Db_n%20sin(nx)%2C%20a_0%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20f(x)dx%0A%5Cend%7Balign%7D%0A%5Ctag%7B6%7D


接下来我们再求系数a_n,对公式(6)两边同乘cos(mx),并对x进行积分,得

%5Cbegin%7Balign%7D%0A%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20f(x)cos(mx)dx%26%3D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20%5Cfrac%7Ba_0%7D%7B2%7Dcos(mx)dx%2B%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Da_ncos(nx)cos(mx)dx%2B%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%20b_nsin(nx)cos(mx)dx%5C%5C%0A%26%3D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20a_n%20cos(nx)%5E2%20dx%5C%5C%0A%26%3Da_n%20%5Cpi%0A%5Cend%7Balign%7D%0A%5Ctag%7B7%7D

所以求得,

%5Cbegin%7Balign%7D%0Aa_n%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%20%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20f(x)cos(nx)%20dx%0A%5Cend%7Balign%7D%0A%5Ctag%7B8%7D

同理求得b_n%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20f(x)sin(nx)dx。这样就求完了周期为2%5Cpi的函数f(x)的傅立叶展开系数。


然而物理中的函数周期通常都不是2%5Cpi,现在来求周期T=2L的函数f(t)的傅立叶展开系数。对于函数f(t),我们有f(t)%3Df(t%2B2L)。为了把函数f(t)的周期变换到2%5Cpi,这里利用换元法,令x%3D%5Cfrac%7B%5Cpi%7D%7BL%7Dt,所以t%3D%5Cfrac%7BL%7D%7B%5Cpi%7Dx。则有,%5Cbegin%7Balign%7D%0Af(t)%3Df(%5Cfrac%7BL%7D%7B%5Cpi%7Dx)%3Dg(x)%3Df(%5Cfrac%7BL%7D%7B%5Cpi%7D(x%2B2%5Cpi))%3Dg(x%2B2%5Cpi)%3Df(t%2B2L)%0A%5Cend%7Balign%7D%0A%5Ctag%7B9%7D

这样就把周期为2L的函数f(t)变换成了周期为2%5Cpi的函数g(x)。周期为2%5Cpi的函数g(x)的展开系数我们已经求过了,即%5Cbegin%7Balign%7D%0Af(t)%26%3D%20%5Cfrac%7Ba_0%7D%7B2%7D%2B%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20%5Ba_ncos(%5Cfrac%7Bn%5Cpi%7D%7BL%7Dt)%2Bb_nsin(%5Cfrac%7Bn%5Cpi%7D%7BL%7Dt)%5D%5C%5C%0Aa_0%26%3D%5Cfrac%7B1%7D%7BL%7D%5Cint_%7B-L%7D%5EL%20f(t)dt%5C%5C%0Aa_n%26%3D%20%5Cfrac%7B1%7D%7BL%7D%20%5Cint_%7B-L%7D%5EL%20f(t)cos(%5Cfrac%7Bn%5Cpi%7D%7BL%7Dt)dt%5C%5C%0Ab_n%26%3D%20%5Cfrac%7B1%7D%7BL%7D%5Cint_%7B-L%7D%5EL%20f(t)sin(%5Cfrac%7Bn%5Cpi%7D%7BL%7Dt)dt%0A%5Cend%7Balign%7D%0A%5Ctag%7B10%7D

做变换%5Cint_%7B-L%7D%5EL%20dt%20%5Cto%20%5Cint_0%5E%7B2L%7Ddt%20%5Cto%20%5Cint_0%5ET%20dt,所以公式(10)可以写为,

%5Cbegin%7Balign%7D%0Af(t)%26%3D%5Cfrac%7Ba_0%7D%7B2%7D%2B%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20%5Ba_n%20cos(n%5Comega%20t)%2Bb_n%20sin(n%5Comega%20t)%5D%5C%5C%0Aa_0%26%3D%5Cfrac%7B2%7D%7BT%7D%5Cint_0%5ET%20f(t)dt%20%5C%5C%0Aa_n%26%3D%5Cfrac%7B2%7D%7BT%7Df(t)cos(n%5Comega%20t)dt%5C%5C%0Ab_n%26%3D%5Cfrac%7B2%7D%7BT%7D%20%5Cint_0%5ET%20f(t)sin(n%5Comega%20t)dt%0A%5Cend%7Balign%7D%0A%5Ctag%7B11%7D

下面引入欧拉公式,

%5Cbegin%7Balign%7D%0Ae%5E%7Bi%5Ctheta%7D%3Dcos(%5Ctheta)%2Bisin(%5Ctheta)%0A%5Cend%7Balign%7D%0A%5Ctag%7B12%7D

所以%5Cbegin%7Balign%7D%0Acos(%5Ctheta)%3D%5Cfrac%7B1%7D%7B2%7D(e%5E%7Bi%5Ctheta%7D%2Be%5E%7B-i%5Ctheta%7D)%2C%20sin(%5Ctheta)%3D-%5Cfrac%7Bi%7D%7B2%7D(e%5E%7Bi%5Ctheta%7D-e%5E%7B-i%5Ctheta%7D)%0A%5Cend%7Balign%7D%0A%5Ctag%7B13%7D

则公式(11)可以化为

%5Cbegin%7Balign%7D%0Af(t)%26%3D%5Cfrac%7Ba_0%7D%7B2%7D%2B%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Ba_n%5Cfrac%7B1%7D%7B2%7D(e%5E%7Bin%5Comega%20t%7D%2Be%5E%7B-in%5Comega%20t%7D)-%5Cfrac%7Bi%7D%7B2%7Db_n(e%5E%7Bin%5Comega%20t%7D-e%5E%7B-in%5Comega%20t%7D)%5D%5C%5C%0A%26%3D%5Cfrac%7Ba_0%7D%7B2%7D%2B%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7Ba_n-ib_n%7D%7B2%7De%5E%7Bin%5Comega%20t%7D%2B%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20%5Cfrac%7Ba_n%2Bib_n%7D%7B2%7De%5E%7B-in%5Comega%20t%7D%0A%5Cend%7Balign%7D%0A%5Ctag%7B14%7D

把公式(14)第二项n%5Cto%20-n%2C%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20%5Cfrac%7Ba_n%2Bib_n%7D%7B2%7De%5E%7B-in%5Comega%20t%7D%5Cto%20%5Csum_%7B-%5Cinfty%7D%5E%7B-1%7D%5Cfrac%7Ba_%7B-n%7D%2Bib_%7B-n%7D%7D%7B2%7De%5E%7Bin%5Comega%20t%7D,公式(14)继续化为,

%5Cbegin%7Balign%7D%0Af(t)%26%3D%5Csum_%7B-%5Cinfty%7D%5E%5Cinfty%20C_ne%5E%7Bin%5Comega%20t%7D%2C%5C%5C%0AC_n%26%3D%5Cfrac%7Ba_0%7D%7B2%7D%2C%20n%3D0%2C%5C%5C%0AC_n%26%3D%5Cfrac%7Ba_n-ib_n%7D%7B2%7D%2C%20n%3D1%2C2%2C3%2C%5Ccdots%5C%5C%0AC_n%26%3D%5Cfrac%7Ba_%7B-n%7D%2Bib_%7B-n%7D%7D%7B2%7D%2C%20n%3D-1%2C-2%2C-3%2C%5Ccdots%0A%5Cend%7Balign%7D%0A%5Ctag%7B15%7D

现在求系数C的具体形式,

%5Cbegin%7Balign%7D%0An%26%3D0%2CC_n%3D%5Cfrac%7Ba_0%7D%7B2%7D%3D%5Cfrac%7B1%7D%7BT%7D%5Cint_0%5ET%20f(t)dt%5C%5C%0An%26%3E0%2C%20C_n%3D%5Cfrac%7B1%7D%7BT%7D%5Cint_0%5ET%20f(t)e%5E%7B-in%5Comega%20t%7Ddt%5C%5C%0An%26%3C0%2C%20C_n%3D%5Cfrac%7B1%7D%7BT%7D%5Cint_0%5ET%20f(t)e%5E%7B-in%5Comega%20t%7Ddt%0A%5Cend%7Balign%7D%0A%5Ctag%7B16%7D

这时,显然我们可以得出公式(15)为,

%5Cbegin%7Balign%7D%0Af(t)%26%3Df(t%2BT)%5C%5C%0Af(t)%26%3D%5Csum_%7B-%5Cinfty%7D%5E%5Cinfty%20C_n%20e%5E%7Bin%5Comega%20t%7D%2C%5C%5C%0AC_n%26%3D%5Cfrac%7B1%7D%7BT%7D%5Cint_0%5ET%20f(t)e%5E%7B-in%5Comega%20t%7Ddt%0A%5Cend%7Balign%7D%0A%5Ctag%7B17%7D

傅立叶变换

下面正式进行傅立叶变换。每个%5Comega的间隔%5CDelta%20%5Comega%5CDelta%20%5Comega%20%3D(n%2B1)%5Comega%20-n%5Comega%3D%5Comega%3D%5Cfrac%7B2%5Cpi%7D%7BT%7D,所以有%5Cfrac%7B1%7D%7BT%7D%3D%5Cfrac%7B%5CDelta%20%5Comega%20%7D%7B2%5Cpi%7D。随着周期T的变大,%5CDelta%20%5Comega越来越小,可以看作由离散变为连续。当T%5Cto%20%5Cinfty,公式(17)e指数上的n%5Comega%20%5Cto%20w%5E%5Cprime%5Cint_%7B-%5Cfrac%7BT%7D%7B2%7D%7D%5E%7B%5Cfrac%7BT%7D%7B2%7D%7Ddt%5Cto%20%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20dt,有

%5Cbegin%7Balign%7D%0Af(t)%26%3D%5Csum_%7B-%5Cinfty%7D%5E%5Cinfty%20%5Cfrac%7B1%7D%7BT%7D%5Cint_%7B-%5Cfrac%7BT%7D%7B2%7D%7D%5E%7B%5Cfrac%7BT%7D%7B2%7D%7Df(t)e%5E%7B-in%5Comega%20t%7Ddte%5E%7Bin%5Comega%20t%7D%5C%5C%0A%26%3D%5Csum_%7B-%5Cinfty%7D%5E%5Cinfty%20%5Cfrac%7B%5CDelta%20%5Comega%7D%7B2%5Cpi%7D%5Cint_%7B-%5Cfrac%7BT%7D%7B2%7D%7D%5E%7B%5Cfrac%7BT%7D%7B2%7D%7Df(t)e%5E%7B-in%5Comega%20t%7Ddte%5E%7Bin%5Comega%20t%7D%5C%5C%0A%26%3D%5Cfrac%7B1%7D%7B2%5Cpi%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20f(t)e%5E%7B-i%5Comega%5E%5Cprime%20t%7Ddt%20e%5E%7Bi%5Comega%5E%5Cprime%20t%7Dd%5Comega%5E%5Cprime%0A%5Cend%7Balign%7D%0A%5Ctag%7B18%7D%20

所以最后有

%5Cbegin%7Balign%7D%0Af(t)%26%3D%5Cfrac%7B1%7D%7B2%5Cpi%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20F(%5Comega)e%5E%7Bi%5Comega%20t%7Dd%5Comega%7C%E9%80%86%E5%8F%98%E6%8D%A2%5C%5C%0AF(%5Comega)%26%3D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20f(t)e%5E%7B-i%5Comega%20t%7Ddt%7C%E5%82%85%E7%AB%8B%E5%8F%B6%E5%8F%98%E6%8D%A2%0A%5Cend%7Balign%7D%0A%5Ctag%7B19%7D

在物理中若要对满足周期性边界条件、正格矢、k空间的函数进行傅立叶变换,只需要把公式(18)中的T代换成N%5COmega%2C%20%5Ctextbf%7Bl%7D%2C%5Ctextbf%7BK%7D即可。详细公式在李正中的《固体理论》第一章第五节中给出。

傅立叶变换的推导的评论 (共 条)

分享到微博请遵守国家法律