欢迎光临散文网 会员登陆 & 注册

量子场论(七):复标量场的正则量子化、U(1)整体对称性

2022-11-19 02:09 作者:我的世界-华汁  | 我要投稿

复标量场不满足自共轭条件:

%5Cphi(x)%5Cne%5Cphi%5E%5Cdagger(x).%5Ctag%7B7.1%7D

自由复标量场的拉格朗日量为:

%5Cmathcal%20L%3D%5Cpartial%5E%5Cmu%5Cphi%5E%5Cdagger%5Cpartial_%5Cmu%5Cphi-m%5E2%5Cphi%5E%5Cdagger%5Cphi.%5Ctag%7B7.2%7D

其中m是复标量场的质量。%5Cphi(x)%5Cphi%5E%5Cdagger(x)线性独立,是两个独立的变量。考虑到:

%5Cfrac%7B%5Cpartial%5Cmathcal%20L%7D%7B%5Cpartial%5Cphi%7D%3D-m%5E2%5Cphi%5E%5Cdagger%2C%5Cfrac%7B%5Cpartial%5Cmathcal%20L%7D%7B%5Cpartial(%5Cpartial_%5Cmu%5Cphi)%7D%3D%5Cpartial%5E%5Cmu%5Cphi%5E%5Cdagger%2C%5Cfrac%7B%5Cpartial%5Cmathcal%20L%7D%7B%5Cpartial%5Cphi%5E%5Cdagger%7D%3D-m%5E2%5Cphi%2C%5Cfrac%7B%5Cpartial%5Cmathcal%20L%7D%7B%5Cpartial(%5Cpartial_%5Cmu%5Cphi%5E%5Cdagger)%7D%3D%5Cpartial%5E%5Cmu%5Cphi.%5Ctag%7B7.3%7D

代入拉格朗日方程就可以得到场算符与它的厄米共轭都满足克莱因-高登方程:

(%5Cpartial_%5Cmu%5Cpartial%5E%5Cmu%2Bm%5E2)%5Cphi%3D0%2C(%5Cpartial_%5Cmu%5Cpartial%5E%5Cmu%2Bm%5E2)%5Cphi%5E%5Cdagger%3D0.%5Ctag%7B7.4%7D

可以将复标量场分解成两个实标量场的组合:

%5Cphi%3D%5Cfrac%7B%5Csqrt2%7D2(%5Cphi_1%2Bi%5Cphi_2)%2C%5Cphi%5E%5Cdagger%3D%5Cfrac%7B%5Csqrt2%7D2(%5Cphi_1-i%5Cphi_2).%5Ctag%7B7.5%7D

经过简单的运算后,拉格朗日量化为:

%5Cmathcal%20L%3D%5Cfrac12%5Cpartial%5E%5Cmu%5Cphi_1%5Cpartial_%5Cmu%5Cphi_1-%5Cfrac12m%5E2%5Cphi_1%5E2%2B%5Cfrac12%5Cpartial%5E%5Cmu%5Cphi_2%5Cpartial_%5Cmu%5Cphi_2-%5Cfrac12m%5E2%5Cphi_2%5E2.%5Ctag%7B7.6%7D

可以知道,复标量场的拉格朗日量等于两个质量相同的实标量场的拉格朗日量之和。

相应地,共轭动量密度为:%5Cpi(x)%3D%5Cfrac%7B%5Cpartial%5Cmathcal%20L%7D%7B%5Cpartial(%5Cpartial_0%5Cphi)%7D%3D%5Cpartial_0%5Cphi%5E%5Cdagger%3D%5Cdot%7B%5Cphi%5E%5Cdagger%7D.%5Ctag%7B7.7%7D

%5Cpi%5E%5Cdagger(x)%3D%5Cfrac%7B%5Cpartial%5Cmathcal%20L%7D%7B%5Cpartial(%5Cpartial_0%5Cphi%5E%5Cdagger)%7D%3D%5Cpartial_0%5Cphi%3D%5Cdot%7B%5Cphi%7D.%5Ctag%7B7.8%7D

哈密顿量密度为:

%5Cmathcal%20H%3D%5Cpi%5E%5Cdagger%5Cpi%2B%5Cnabla%5Cphi%5E%5Cdagger%5Ccdot%5Cnabla%5Cphi%2Bm%5E2%5Cphi%5E%5Cdagger%5Cphi.%5Ctag%7B7.9%7D

由于复标量场满足克莱因-高登方程,自然也可以平面波展开:

%5Cphi(%5Cmathbf%20x%2Ct)%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%5Csqrt%7B2E_%5Cmathbf%20k%7D%7D%5Ba_%5Cmathbf%20ke%5E%7B-i(E_%5Cmathbf%20kt-%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D%2B%5Ctilde%20a_%5Cmathbf%20ke%5E%7Bi(E_%5Cmathbf%20kt%2B%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D%5D%5Cmathrm%20d%5E3k%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%5Csqrt%7B2E_%5Cmathbf%20k%7D%7D%5Ba_%5Cmathbf%20ke%5E%7B-i(E_%5Cmathbf%20kt-%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D%2B%5Ctilde%20a_%5Cmathbf%7B-k%7De%5E%7Bi(E_%5Cmathbf%20kt-%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D%5D%5Cmathrm%20d%5E3k.%5Ctag%7B7.10%7D

由于不满足自共轭条件,所以a_%5Cmathbf%20k%5Ctilde%20a_%7B-%5Cmathbf%20k%7D之间没有什么关系,引入记号:

b_%5Cmathbf%20k%5E%5Cdagger%3D%5Ctilde%20a_%7B-%5Cmathbf%20k%7D.%5Ctag%7B7.11%7D

故平面波展开式变为:

%5Cphi(%5Cmathbf%20x%2Ct)%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%5Csqrt%7B2E_%5Cmathbf%20k%7D%7D%5Ba_%5Cmathbf%20ke%5E%7B-i(E_%5Cmathbf%20kt-%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D%2Bb_%5Cmathbf%20k%5E%5Cdagger%20e%5E%7Bi(E_%5Cmathbf%20kt-%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D%5D%5Cmathrm%20d%5E3k.%5Ctag%7B7.12%7D

替换成动量记号,则:

%5Cphi(%5Cmathbf%20x%2Ct)%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%5Csqrt%7B2E_%5Cmathbf%20p%7D%7D(a_%5Cmathbf%20pe%5E%7B-ip%5Ccdot%20x%7D%2Bb_%5Cmathbf%20p%5E%5Cdagger%20e%5E%7Bip%5Ccdot%20x%7D)%5Cmathrm%20d%5E3p.%5Ctag%7B7.13%7D

取厄米共轭,得到:

%5Cphi%5E%5Cdagger(%5Cmathbf%20x%2Ct)%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%5Csqrt%7B2E_%5Cmathbf%20p%7D%7D(b_%5Cmathbf%20pe%5E%7B-ip%5Ccdot%20x%7D%2Ba_%5Cmathbf%20p%5E%5Cdagger%20e%5E%7Bip%5Ccdot%20x%7D)%5Cmathrm%20d%5E3p.%5Ctag%7B7.14%7D

a_%5Cmathbf%20pb_%5Cmathbf%20p是两个独立的湮灭算符,a_%5Cmathbf%20p%5E%5Cdaggerb_%5Cmathbf%20p%5E%5Cdagger是两个独立的产生算符。

共轭动量密度为:

%5Cpi(%5Cmathbf%20x%2Ct)%3D%7B%5Cdot%5Cphi%7D%5E%5Cdagger%3D%5Cint%5Cfrac%7B-i%5Csqrt%7BE_%5Cmathbf%20p%7D%7D%7B(2%5Cpi)%5E3%5Csqrt2%7D(b_%5Cmathbf%20pe%5E%7B-ip%5Ccdot%20x%7D-a_%5Cmathbf%20p%5E%5Cdagger%20e%5E%7Bip%5Ccdot%20x%7D).%5Ctag%7B7.15%7D

%5Cpi%5E%5Cdagger(%5Cmathbf%20x%2Ct)%3D%7B%5Cdot%5Cphi%7D%3D%5Cint%5Cfrac%7B-i%5Csqrt%7BE_%5Cmathbf%20p%7D%7D%7B(2%5Cpi)%5E3%5Csqrt2%7D(a_%5Cmathbf%20pe%5E%7B-ip%5Ccdot%20x%7D-b_%5Cmathbf%20p%5E%5Cdagger%20e%5E%7Bip%5Ccdot%20x%7D).%5Ctag%7B7.16%7D

等时对易关系为:

%5Cbegin%7Balign%7D%5B%5Cphi(%5Cmathbf%20x%2Ct)%2C%5Cpi(%5Cmathbf%20y%2Ct)%5D%26%3Di%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20x-%5Cmathbf%20y)%2C%5B%5Cphi(%5Cmathbf%20x%2Ct)%2C%5Cphi(%5Cmathbf%20y%2Ct)%5D%3D%5B%5Cpi(%5Cmathbf%20x%2Ct)%2C%5Cpi(%5Cmathbf%20y%2Ct)%5D%3D0%2C%5C%5C%20%5B%5Cphi%5E%5Cdagger(%5Cmathbf%20x%2Ct)%2C%5Cpi%5E%5Cdagger(%5Cmathbf%20y%2Ct)%5D%26%3Di%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20x-%5Cmathbf%20y)%2C%5B%5Cphi%5E%5Cdagger(%5Cmathbf%20x%2Ct)%2C%5Cphi%5E%5Cdagger(%5Cmathbf%20y%2Ct)%5D%3D%5B%5Cpi%5E%5Cdagger(%5Cmathbf%20x%2Ct)%2C%5Cpi%5E%5Cdagger(%5Cmathbf%20y%2Ct)%5D%3D0%2C%5C%5C%20%5B%5Cphi(%5Cmathbf%20x%2Ct)%2C%5Cpi%5E%5Cdagger(%5Cmathbf%20y%2Ct)%5D%26%3D%5B%5Cphi%5E%5Cdagger(%5Cmathbf%20x%2Ct)%2C%5Cpi(%5Cmathbf%20y%2Ct)%5D%3D%5B%5Cphi(%5Cmathbf%20x%2Ct)%2C%5Cphi%5E%5Cdagger(%5Cmathbf%20y%2Ct)%5D%3D%5B%5Cpi(%5Cmathbf%20x%2Ct)%2C%5Cpi%5E%5Cdagger(%5Cmathbf%20y%2Ct)%5D%3D0.%5Cend%7Balign%7D%5Ctag%7B7.17%7D

也可推出产生湮灭算符的对易关系为:

%5Cbegin%7Balign%7D%5Ba_%5Cmathbf%20p%2Ca_%5Cmathbf%20q%5E%5Cdagger%5D%26%3D(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20q)%2C%5Ba_%5Cmathbf%20p%2Ca_%5Cmathbf%20q%5D%3D%5Ba%5E%5Cdagger_%5Cmathbf%20p%2Ca_%5Cmathbf%20q%5E%5Cdagger%5D%3D0%2C%5C%5C%20%5Bb_%5Cmathbf%20p%2Cb_%5Cmathbf%20q%5E%5Cdagger%5D%26%3D(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20q)%2C%5Bb_%5Cmathbf%20p%2Cb_%5Cmathbf%20q%5D%3D%5Bb%5E%5Cdagger_%5Cmathbf%20p%2Cb_%5Cmathbf%20q%5E%5Cdagger%5D%3D0%2C%5C%5C%20%5Ba_%5Cmathbf%20p%2Cb_%5Cmathbf%20q%5E%5Cdagger%5D%26%3D%5Bb_%5Cmathbf%20p%2Ca_%5Cmathbf%20q%5E%5Cdagger%5D%3D%5Ba_%5Cmathbf%20p%2Cb_%5Cmathbf%20q%5D%3D%5Ba%5E%5Cdagger_%5Cmathbf%20p%2Cb_%5Cmathbf%20q%5E%5Cdagger%5D%3D0%2C%5Cend%7Balign%7D%5Ctag%7B7.18%7D

U(1)是幺正群,群元可以是全体模为1的复数。对复标量场%5Cphi(x)做U(1)整体变换:

%5Cphi%5E%5Cprime(x)%3De%5E%7Biq%5Ctheta%7D%5Cphi(x)%2C%7B%5Cphi%5E%5Cdagger%7D%5E%5Cprime(x)%3De%5E%7B-iq%5Ctheta%7D%5Cphi%5E%5Cdagger(x).%5Ctag%7B7.19%7D

那么拉格朗日量是不变的。这就是U(1)整体对称性,其中q称为U(1)荷。相应的U(1)守恒流为:

J%5E%5Cmu%3Dq%5Cphi%5E%5Cdagger%20i%5Coverleftrightarrow%7B%5Cpartial%5E%5Cmu%7D%5Cphi.%5Ctag%7B7.20%7D

它是一个厄米算符:

%7BJ%5E%5Cmu%7D%5E%5Cdagger%3DJ%5E%5Cmu.%5Ctag%7B7.21%7D

U(1)守恒荷为:

%5Cbegin%7Balign%7DQ%26%3Dq%5Cint%5Cphi%5E%5Cdagger%20i%5Coverleftrightarrow%7B%5Cpartial%5E0%7D%5Cphi%5Cmathrm%20d%5E3x%3Diq%5Cint(%5Cphi%5E%5Cdagger%5Cpi%5E%5Cdagger-%5Cpi%5Cphi)%5Cmathrm%20d%5E3x%5C%5C%26%3Diq%5Cint%5Cfrac1%7B(2%5Cpi)%5E6%5Csqrt%7B4E_%5Cmathbf%20pE_%5Cmathbf%20k%7D%7D%5B(b_%5Cmathbf%20pe%5E%7B-ip%5Ccdot%20x%7D%2Ba_%5Cmathbf%20p%5E%5Cdagger%20e%5E%7Bip%5Ccdot%20x%7D)(-iE_%5Cmathbf%20k)(a_%5Cmathbf%20ke%5E%7B-ik%5Ccdot%20x%7D-b_%5Cmathbf%20k%5E%5Cdagger%20e%5E%7Bik%5Ccdot%20x%7D)-(-iE_%5Cmathbf%20p)(b_%5Cmathbf%20pe%5E%7B-ip%5Ccdot%20x%7D-a_%5Cmathbf%20p%5E%5Cdagger%20e%5E%7Bip%5Ccdot%20x%7D)(a_%5Cmathbf%20ke%5E%7B-ik%5Ccdot%20x%7D%2Bb_%5Cmathbf%20k%5E%5Cdagger%20e%5E%7Bik%5Ccdot%20x%7D)%5D%5Cmathrm%20d%5E3x%5Cmathrm%20d%5E3p%5Cmathrm%20d%5E3k%5C%5C%26%3Dq%5Cint%5Cfrac1%7B(2%5Cpi)%5E6%5Csqrt%7B4E_%5Cmathbf%20pE_%5Cmathbf%20k%7D%7D%5C%7B(E_%5Cmathbf%20k%2BE_%5Cmathbf%20p)%5Ba%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20qe%5E%7Bi(p-k)%5Ccdot%20x%7D-b_%5Cmathbf%20pb%5E%5Cdagger_%5Cmathbf%20ke%5E%7B-i(p-k)%5Ccdot%20x%7D%5D%2B(E_%5Cmathbf%20k-E_%5Cmathbf%20p)%5Bb_%5Cmathbf%20pa_%5Cmathbf%20ke%5E%7B-i(p%2Bk)%5Ccdot%20x%7D-a%5E%5Cdagger_%5Cmathbf%20pb%5E%5Cdagger_%5Cmathbf%20ke%5E%7Bi(p%2Bk)%5Ccdot%20x%7D%5D%5C%7D%5Cmathrm%20d%5E3x%5Cmathrm%20d%5E3p%5Cmathrm%20d%5E3k%5C%5C%26%3Dq%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%5Csqrt%7B4E_%5Cmathbf%20pE_%5Cmathbf%20k%7D%7D%5C%7B(E_%5Cmathbf%20k%2BE_%5Cmathbf%20p)%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20k)%5Ba%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20ke%5E%7Bi(E_%5Cmathbf%20p-E_%5Cmathbf%20k)t%7D-b_%5Cmathbf%20pb%5E%5Cdagger_%5Cmathbf%20ke%5E%7B-i(E_%5Cmathbf%20p-E_%5Cmathbf%20k)t%7D%5D%2B(E_%5Cmathbf%20k-E_%5Cmathbf%20p)%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p%2B%5Cmathbf%20k)%5Bb_%5Cmathbf%20pa_%5Cmathbf%20ke%5E%7B-i(E_%5Cmathbf%20p%2BE_%5Cmathbf%20k)t%7D-a%5E%5Cdagger_%5Cmathbf%20pb%5E%5Cdagger_%5Cmathbf%20ke%5E%7Bi(E_%5Cmathbf%20p%2BE_%5Cmathbf%20k)t%7D%5D%5C%7D%5Cmathrm%20d%5E3p%5Cmathrm%20d%5E3k%5C%5C%26%3Dq%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7D(a%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20p-b_%5Cmathbf%20pb%5E%5Cdagger_%5Cmathbf%20p)%5Cmathrm%20d%5E3p%5C%5C%26%3Dq%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7D(a%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20p-b%5E%5Cdagger_%5Cmathbf%20pb_%5Cmathbf%20p)%5Cmathrm%20d%5E3p-%5Cdelta%5E%7B(3)%7D(%5Cmathbf%200)%5Cint%20q%5Cmathrm%20d%5E3p.%5Cend%7Balign%7D%5Ctag%7B7.22%7D

第二项是零点荷。可见,a_%5Cmathbf%20pa_%5Cmathbf%20p%5E%5Cdagger描述荷为q的粒子,称为正粒子,b_%5Cmathbf%20pb_%5Cmathbf%20p%5E%5Cdagger描述荷为-q的粒子,称为反粒子。复标量场描述一对正反标量玻色子。除负无穷大的零点荷,总荷是正粒子的荷与反粒子的荷之和。这里单粒子的荷对总荷的贡献是相加性的,而且来源于一种内禀对称性,因此是一种内部相加性量子数。反粒子的所有内部相加性量子数都与正粒子相反。

实标量场的荷q%3D0%2C反粒子与正粒子相同,因此实标量场描述纯中性标量玻色子。

经过类似的推导,复标量场的哈密顿算符为:

%5Chat%20H%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7DE_%5Cmathbf%20p(a%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20p%2Bb%5E%5Cdagger_%5Cmathbf%20pb_%5Cmathbf%20p)%5Cmathrm%20d%5E3p%2B%5Cdelta%5E%7B(3)%7D(%5Cmathbf%200)%5Cint%20E_%5Cmathbf%20p%5Cmathrm%20d%5E3p.%5Ctag%7B7.23%7D

总动量算符为:

%5Chat%7B%5Cmathbf%20p%7D%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7D%5Cmathbf%20p(a%5E%5Cdagger_%5Cmathbf%20pa_%5Cmathbf%20p%2Bb%5E%5Cdagger_%5Cmathbf%20pb_%5Cmathbf%20p)%5Cmathrm%20d%5E3p.%5Ctag%7B7.24%7D

量子场论(七):复标量场的正则量子化、U(1)整体对称性的评论 (共 条)

分享到微博请遵守国家法律