欢迎光临散文网 会员登陆 & 注册

复习笔记Day121:卡尔曼滤波的推导

2023-07-28 01:46 作者:间宫_卓司  | 我要投稿

这篇专栏只涉及到卡尔曼滤波的一个比较原始的推导,比较现代的推导见

https://zhuanlan.zhihu.com/p/166342719

首先来介绍一下卡尔曼滤波要解决的问题:对于给定的系统

%5Cbegin%7Bcases%7D%0A%09x%5Cleft(%20k%2B1%20%5Cright)%20%3D%5CvarPhi%20x%5Cleft(%20k%20%5Cright)%5C%5C%0A%09y%5Cleft(%20k%20%5Cright)%20%3D%5CvarTheta%20x%5Cleft(%20k%20%5Cright)%5C%5C%0A%5Cend%7Bcases%7D

其中x(k)为实际值,y(k)为观测值,而现实中测量以及系统本身都是存在误差的,也就是说,在这个系统中,初值不再是一个数,而是服从某个分布的随机变量;观测和迭代也不可能是绝对准确的,要加上一个噪声。在这样的假设下,模型就变成了

%5Cbegin%7Bcases%7D%0A%09x%5Cleft(%20k%2B1%20%5Cright)%20%3D%5CvarPhi%20x%5Cleft(%20k%20%5Cright)%20%2B%5Cxi%20%5Cleft(%20k%20%5Cright)%5C%5C%0A%09y%5Cleft(%20k%20%5Cright)%20%3D%5CvarTheta%20x%5Cleft(%20k%20%5Cright)%20%2B%5Ceta%20%5Cleft(%20k%20%5Cright)%5C%5C%0A%5Cend%7Bcases%7D

其中假设了初值以及噪声都是服从正态分布的。

因为加入了噪声,所以要绝对精确的得知x(k)的值是不可能的,所以只能去求在已知信息下,关于x(k)的最优估计%5Chat%7Bx%7D%5Cleft(%20k%7Ck%20%5Cright)%20,其中后一个k代表前k步的信息作为已知信息

首先需要明确的是何为最优,在我参考的教材中,对最优的定义见复习笔记Day119,同样在那篇文章里说明了,此时有x_0,也就是说:在已知观测值y%5Cleft(%201%20%5Cright)%20%2Cy%5Cleft(%202%20%5Cright)%20%2C%5Ccdots%20%2Cy%5Cleft(%20n%20%5Cright)%20的情况下,对x(k)的最优估计正是限制在这些观测值下迭代条件期望。下面分几步来给出计算这个值的递推公式

注意这里的迭代关系都是线性的,故x(k)%2Cy(k)都是服从某个多维正态分布的(注意它们是向量而不是一个数)

首先先来研究一下如果随机变量X的概率密度函数为f(x),随机变量Y的概率密度函数为f(y),它们的联合分布的概率密度函数为f(x%2Cy)。那么XY的限制下的条件概率密度函数如何?,也就是去计算f%5Cleft(%20x%7Cy%20%5Cright)%20%3D%5Cfrac%7Bf%5Cleft(%20x%2Cy%20%5Cright)%7D%7Bf%5Cleft(%20y%20%5Cright)%7D

下面来做一些假设,设X%5Csim%20N%5Cleft(%20m_x%2CR_x%20%5Cright)%2CY%5Csim%20N%5Cleft(%20m_y%2CR_y%20%5Cright)%20,X%2CY之间的协方差矩阵为R_%7Bxy%7D,那么随机变量C%3D(X%2CY)的协方差矩阵就是R%3D%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09R_x%26%09%09R_%7Bxy%7D%5C%5C%0A%09R_%7Byx%7D%26%09%09R_y%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20,于是就有下面的计算过程,计算过程其实不是很复杂,不过写的比较详细,所以看起来很长。

T%3D%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09I%26%09%09-R_%7Bxy%7DR_%7By%7D%5E%7B-1%7D%5C%5C%0A%090%26%09%09I%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20,则R_1%3DTR%3D%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09R_x-R_%7Bxy%7DR_%7By%7D%5E%7B-1%7DR_%7Byx%7D%26%09%090%5C%5C%0A%09R_%7Byx%7D%26%09%09R_y%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20,进而

R_%7B1%7D%5E%7B-1%7D%3D%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09%5Cleft(%20R_x-R_%7Bxy%7DR_%7By%7D%5E%7B-1%7DR_%7Byx%7D%20%5Cright)%20%5E%7B-1%7D%26%09%090%5C%5C%0A%09-R_%7By%7D%5E%7B-1%7DR_%7Byx%7D%5Cleft(%20R_x-R_%7Bxy%7DR_%7By%7D%5E%7B-1%7DR_%7Byx%7D%20%5Cright)%20%5E%7B-1%7D%26%09%09R_%7By%7D%5E%7B-1%7D%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20,从后面的结果来看,这样做是为了把y单独分离出来。

从而

%5Cbegin%7Baligned%7D%0A%09%26f(x%2Cy)%5C%5C%0A%09%26%3D(2%5Cpi%20)%5E%7B-%5Cfrac%7Bn_x%2Bn_y%7D%7B2%7D%7D(%5Cdet%20R)%5E%7B-%5Cfrac%7Bn_x%2Bn_y%7D%7B2%7D%7D%5Cexp%20%5Cleft%5C%7B%20-%5Cfrac%7B1%7D%7B2%7D%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bl%7D%0A%09x-m_x%5C%5C%0A%09y-m_y%5C%5C%0A%5Cend%7Barray%7D%20%5Cright%5D%20%5E%7B%5Cmathrm%7BT%7D%7DR%5E%7B-1%7D%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bl%7D%0A%09x-m_x%5C%5C%0A%09y-m_y%5C%5C%0A%5Cend%7Barray%7D%20%5Cright%5D%20%5Cright%5C%7D%5C%5C%0A%09%26%3D(2%5Cpi%20)%5E%7B-%5Cfrac%7Bn_x%2Bn_y%7D%7B2%7D%7D(%5Cdet%20R)%5E%7B-%5Cfrac%7Bn_x%2Bn_y%7D%7B2%7D%7D%5Cexp%20%5Cleft%5C%7B%20-%5Cfrac%7B1%7D%7B2%7D%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bl%7D%0A%09x-m_x%5C%5C%0A%09y-m_y%5C%5C%0A%5Cend%7Barray%7D%20%5Cright%5D%20%5E%7B%5Cmathrm%7BT%7D%7D%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09R_x%26%09%09R_%7Bxy%7D%5C%5C%0A%09R_%7Byx%7D%26%09%09R_y%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20%5E%7B-1%7D%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bl%7D%0A%09x-m_x%5C%5C%0A%09y-m_y%5C%5C%0A%5Cend%7Barray%7D%20%5Cright%5D%20%5Cright%5C%7D%5C%5C%0A%09%26%3D(2%5Cpi%20)%5E%7B-%5Cfrac%7Bn_x%2Bn_y%7D%7B2%7D%7D(%5Cdet%20R)%5E%7B-%5Cfrac%7Bn_x%2Bn_y%7D%7B2%7D%7D%5Cexp%20%5Cleft%5C%7B%20-%5Cfrac%7B1%7D%7B2%7D%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bl%7D%0A%09x-m_x%5C%5C%0A%09y-m_y%5C%5C%0A%5Cend%7Barray%7D%20%5Cright%5D%20%5E%7B%5Cmathrm%7BT%7D%7D%5Cleft(%20T%5E%7B-1%7DR_1%20%5Cright)%20%5E%7B-1%7D%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bl%7D%0A%09x-m_x%5C%5C%0A%09y-m_y%5C%5C%0A%5Cend%7Barray%7D%20%5Cright%5D%20%5Cright%5C%7D%5C%5C%0A%09%26%3D(2%5Cpi%20)%5E%7B-%5Cfrac%7Bn_x%2Bn_y%7D%7B2%7D%7D(%5Cdet%20R)%5E%7B-%5Cfrac%7Bn_x%2Bn_y%7D%7B2%7D%7D%5Cexp%20%5Cleft%5C%7B%20-%5Cfrac%7B1%7D%7B2%7D%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bl%7D%0A%09x-m_x%5C%5C%0A%09y-m_y%5C%5C%0A%5Cend%7Barray%7D%20%5Cright%5D%20%5E%7B%5Cmathrm%7BT%7D%7DR_%7B1%7D%5E%7B-1%7DT%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bl%7D%0A%09x-m_x%5C%5C%0A%09y-m_y%5C%5C%0A%5Cend%7Barray%7D%20%5Cright%5D%20%5Cright%5C%7D%5C%5C%0A%09%26%3D(2%5Cpi%20)%5E%7B-%5Cfrac%7Bn_x%2Bn_y%7D%7B2%7D%7D(%5Cdet%20R)%5E%7B-%5Cfrac%7Bn_x%2Bn_y%7D%7B2%7D%7D%5Cexp%20%5Cleft%5C%7B%20-%5Cfrac%7B1%7D%7B2%7D%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bl%7D%0A%09x-m_x%5C%5C%0A%09y-m_y%5C%5C%0A%5Cend%7Barray%7D%20%5Cright%5D%20%5E%7B%5Cmathrm%7BT%7D%7D%20%5Cright.%5C%5C%0A%09%26%5Cleft.%20%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09%5Cleft(%20R_x-R_%7Bxy%7DR_%7By%7D%5E%7B-1%7DR_%7Byx%7D%20%5Cright)%20%5E%7B-1%7D%26%09%090%5C%5C%0A%09-R_%7By%7D%5E%7B-1%7DR_%7Byx%7D%5Cleft(%20R_x-R_%7Bxy%7DR_%7By%7D%5E%7B-1%7DR_%7Byx%7D%20%5Cright)%20%5E%7B-1%7D%26%09%09R_%7By%7D%5E%7B-1%7D%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09I%26%09%09-R_%7Bxy%7DR_%7By%7D%5E%7B-1%7D%5C%5C%0A%090%26%09%09I%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bl%7D%0A%09x-m_x%5C%5C%0A%09y-m_y%5C%5C%0A%5Cend%7Barray%7D%20%5Cright%5D%20%5Cright%5C%7D%5C%5C%0A%09%26%3D(2%5Cpi%20)%5E%7B-%5Cfrac%7Bn_x%2Bn_y%7D%7B2%7D%7D(%5Cdet%20R)%5E%7B-%5Cfrac%7Bn_x%2Bn_y%7D%7B2%7D%7D%5Cexp%20%5Cleft%5C%7B%20-%5Cfrac%7B1%7D%7B2%7D%5Cleft%5B%20%5Cleft(%20x-m_x%20%5Cright)%20%5ET%5Cleft(%20R_x-R_%7Bxy%7DR_%7By%7D%5E%7B-1%7DR_%7Byx%7D%20%5Cright)%20%5E%7B-1%7D%20%5Cright.%20%5Cright.%5C%5C%0A%09%26%5Cleft.%20-%5Cleft(%20y-m_y%20%5Cright)%20%5ETR_%7By%7D%5E%7B-1%7DR_%7Byx%7D%5Cleft(%20R_x-R_%7Bxy%7DR_%7By%7D%5E%7B-1%7DR_%7Byx%7D%20%5Cright)%20%5E%7B-1%7D%2C%5Cleft(%20y-m_y%20%5Cright)%20%5ETR_%7By%7D%5E%7B-1%7D%20%5Cright%5D%5C%5C%0A%09%26%5Cleft.%20%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Cleft(%20x-m_x%20%5Cright)%20-R_%7Bxy%7DR_%7By%7D%5E%7B-1%7D%5Cleft(%20y-m_y%20%5Cright)%5C%5C%0A%09y-m_y%5C%5C%0A%5Cend%7Barray%7D%20%5Cright%5D%20%5Cright%5C%7D%5C%5C%0A%09%26%5Ctriangleq%20(2%5Cpi%20)%5E%7B-%5Cfrac%7Bn_x%7D%7B2%7D%7D(%5Cdet%20R)%5E%7B-%5Cfrac%7Bn_x%7D%7B2%7D%7D%5Cexp%20%5Cleft.%20%5Cleft%5C%7B%20-%5Cfrac%7B1%7D%7B2%7D%5Cleft(%20x-m_%7Bx%7Cy%7D%20%5Cright)%20%5ETR_%7Bx%7Cy%7D%5E%7B-1%7D%5Cleft(%20x-m_%7Bx%7Cy%7D%20%5Cright)%20%5Cright.%20%5Cright%5C%7D%20f%5Cleft(%20y%20%5Cright)%5C%5C%0A%5Cend%7Baligned%7D

其中最后一个等号的计算过程如下

%5Cbegin%7Baligned%7D%0A%09%26%5Cleft(%20x-m_x%20%5Cright)%20%5ET%5Cleft(%20R_x-R_%7Bxy%7DR_%7By%7D%5E%7B-1%7DR_%7Byx%7D%20%5Cright)%20%5E%7B-1%7D-%5Cleft(%20y-m_y%20%5Cright)%20%5ETR_%7By%7D%5E%7B-1%7DR_%7Byx%7D%5Cleft(%20R_x-R_%7Bxy%7DR_%7By%7D%5E%7B-1%7DR_%7Byx%7D%20%5Cright)%20%5E%7B-1%7D%5C%5C%0A%09%26%3D%5Cleft(%20%5Cleft(%20x-m_x%20%5Cright)%20%5ET-%5Cleft(%20y-m_y%20%5Cright)%20%5ETR_%7By%7D%5E%7B-1%7DR_%7Byx%7D%20%5Cright)%20%5Cleft(%20R_x-R_%7Bxy%7DR_%7By%7D%5E%7B-1%7DR_%7Byx%7D%20%5Cright)%20%5E%7B-1%7D%5C%5C%0A%09%26%3D%5Cleft(%20x-m_x-R_%7Bxy%7DR_%7By%7D%5E%7B-1%7D%5Cleft(%20y-m_y%20%5Cright)%20%5Cright)%20%5ET%5Cleft(%20R_x-R_%7Bxy%7DR_%7By%7D%5E%7B-1%7DR_%7Byx%7D%20%5Cright)%20%5E%7B-1%7D%5C%5C%0A%09%26%5Ctriangleq%20%5Cleft(%20x-m_%7Bx%7Cy%7D%20%5Cright)%20R_%7Bx%7Cy%7D%5E%7B-1%7D%5C%5C%0A%5Cend%7Baligned%7D

也就是说

%5Cfrac%7Bf%5Cleft(%20x%2Cy%20%5Cright)%7D%7Bf%5Cleft(%20y%20%5Cright)%7D%3D(2%5Cpi%20)%5E%7B-%5Cfrac%7Bn_x%7D%7B2%7D%7D(%5Cdet%20R)%5E%7B-%5Cfrac%7Bn_x%7D%7B2%7D%7D%5Cexp%20%5Cleft.%20%5Cleft%5C%7B%20-%5Cfrac%7B1%7D%7B2%7D%5Cleft(%20x-m_%7Bx%7Cy%7D%20%5Cright)%20%5ETR_%7Bx%7Cy%7D%5E%7B-1%7D%5Cleft(%20x-m_%7Bx%7Cy%7D%20%5Cright)%20%5Cright.%20%5Cright%5C%7D%20

注意到这个式子中,%5Cfrac%7Bf%5Cleft(%20x%2Cy%20%5Cright)%7D%7Bf%5Cleft(%20y%20%5Cright)%7D同样可以视为某个服从正态分布的随机变量的概率密度函数

接下来来计算

Z%5Csim%20N%5Cleft(%20m_%7Bx%7Cy%7D%2CR_%7Bx%7Cy%7D%5E%7B%7D%20%5Cright)%20%3DN%5Cleft(%20m_x-R_%7Bxy%7DR_%7By%7D%5E%7B-1%7D%5Cleft(%20y-m_y%20%5Cright)%20%2CR_x-R_%7Bxy%7DR_%7By%7D%5E%7B-1%7DR_%7Byx%7D%20%5Cright)%20,注意这样假设把y视为了常量,那么

%5Cmathbb%7BE%7D%20%5Cleft(%20X%7Cy%20%5Cright)%20%3D%5Cmathbb%7BE%7D%20%5Cleft(%20z%20%5Cright)%20%3Dm_x-R_%7Bxy%7DR_%7By%7D%5E%7B-1%7D%5Cleft(%20y-m_y%20%5Cright)%20

注意这里把y视为了一个数,而%5Cmathbb%7BE%7D%20%5Cleft(%20X%7Cy%20%5Cright)%20%5Cmathbb%7BE%7D%20%5Cleft(%20X%7CY%3Dy%20%5Cright)%20的缩写,所以如果把y视为一个随机变量,那么%5Cmathbb%7BE%7D%20%5Cleft(%20X%7Cy%20%5Cright)%20也是一个随机变量,所以干脆记成%5Cmathbb%7BE%7D%20%5Cleft(%20X%7CY%20%5Cright)%20(这块不太能讲清楚,凑合着看吧)。总之,这样就得到了

%5Cmathbb%7BE%7D%20%5Cleft(%20X%7CY%20%5Cright)%20%3Dm_x-R_%7Bxy%7DR_%7By%7D%5E%7B-1%7D%5Cleft(%20Y-m_y%20%5Cright)%20

接下来,为了获得递推式,来计算%5Cmathbb%7BE%7D%20%5Cleft(%20X%7Cy%2Cz%20%5Cright)%20,其中X%2CY%2CZ都是服从正态分布的。先考虑简单的情况,即Y%2CZ是相互独立的情况

%5Cbegin%7Baligned%7D%0A%09%5Cmathbb%7BE%7D%20%5Cleft(%20X%7Cy%2Cz%20%5Cright)%20%26%3Dm_x-%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09R_%7Bxy%7D%26%09%09R_%7Bxz%7D%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09R_y%26%09%09%5C%5C%0A%09%26%09%09R_z%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20%5E%7B-1%7D%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09y-m_y%5C%5C%0A%09z-m_z%5C%5C%0A%5Cend%7Barray%7D%20%5Cright%5D%5C%5C%0A%09%26%3Dm_x-%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09R_%7Bxy%7D%26%09%09R_%7Bxz%7D%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09R_%7By%7D%5E%7B-1%7D%26%09%09%5C%5C%0A%09%26%09%09R_%7Bz%7D%5E%7B-1%7D%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09y-m_y%5C%5C%0A%09z-m_z%5C%5C%0A%5Cend%7Barray%7D%20%5Cright%5D%5C%5C%0A%09%26%3D%5Cleft(%20m_x-R_%7Bxy%7DR_%7By%7D%5E%7B-1%7D%5Cleft(%20y-m_y%20%5Cright)%20%5Cright)%20%2B%5C%5C%0A%09%26%5Cleft(%20m_x-R_%7Bxy%7DR_%7Bz%7D%5E%7B-1%7D%5Cleft(%20z-m_z%20%5Cright)%20%5Cright)%20-m_x%5C%5C%0A%09%26%3D%5Cmathbb%7BE%7D%20%5Cleft(%20X%7Cy%20%5Cright)%20%2B%5Cmathbb%7BE%7D%20%5Cleft(%20X%7Cz%20%5Cright)%20-m_x%5C%5C%0A%5Cend%7Baligned%7D

和上面一样,也有%5Cmathbb%7BE%7D%20%5Cleft(%20X%7CY%2CZ%20%5Cright)%20%3D%5Cmathbb%7BE%7D%20%5Cleft(%20X%7CY%20%5Cright)%20%2B%5Cmathbb%7BE%7D%20%5Cleft(%20X%7CZ%20%5Cright)%20-m_x

接下来讨论Y%2CZ相关的情况,实际上有结论%5Cmathbb%7BE%7D%20%5Cleft(%20X%7CY%2CZ%20%5Cright)%20%3D%5Cmathbb%7BE%7D%20%5Cleft(%20X%7CY%2C%5Cwidetilde%7BZ%7D%5Cleft(%20Y%20%5Cright)%20%5Cright)%20,这里的%5Cwidetilde%7BZ%7D%5Cleft(%20Y%20%5Cright)%20指的是Z减去了Z在Y条件下的最优预测值,即Z-%5Cmathbb%7BE%7D%20%5Cleft(%20Z%7CY%20%5Cright)%20。这个结论的证明如下

%5Cbegin%7Baligned%7D%0A%09%26%5Cmathbb%7BE%7D%20%5Cleft(%20X%7Cy%2Cz%20%5Cright)%5C%5C%0A%09%26%3Dm_x-%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09R_%7Bxy%7D%26%09%09R_%7Bxz%7D%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09R_y%26%09%09R_%7Byz%7D%5C%5C%0A%09R_%7Bzy%7D%26%09%09R_z%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20%5E%7B-1%7D%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09y-m_y%5C%5C%0A%09z-m_z%5C%5C%0A%5Cend%7Barray%7D%20%5Cright%5D%5C%5C%0A%09%26%3Dm_x-%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09R_%7Bxy%7D%26%09%09R_%7Bxz%7D%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09R_y%26%09%09R_%7Byz%7D%5C%5C%0A%09R_%7Bzy%7D%26%09%09R_z%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20%5E%7B-1%7D%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09y-m_y%5C%5C%0A%09z-m_z%5C%5C%0A%5Cend%7Barray%7D%20%5Cright%5D%5C%5C%0A%09%26%3Dm_x-%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09R_%7Bxy%7D%26%09%09R_%7Bxz%7D%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09%5Cleft(%20R_y-R_%7Byz%7DR_%7Bz%7D%5E%7B-1%7DR_%7Bzy%7D%20%5Cright)%20%5E%7B-1%7D%26%09%090%5C%5C%0A%09-R_%7Bz%7D%5E%7B-1%7DR_%7Bzy%7D%5Cleft(%20R_y-R_%7Byz%7DR_%7Bz%7D%5E%7B-1%7DR_%7Bzy%7D%20%5Cright)%20%5E%7B-1%7D%26%09%09R_%7Bz%7D%5E%7B-1%7D%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09I%26%09%09-R_%7Byz%7DR_%7Bz%7D%5E%7B-1%7D%5C%5C%0A%090%26%09%09I%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09y-m_y%5C%5C%0A%09z-m_z%5C%5C%0A%5Cend%7Barray%7D%20%5Cright%5D%5C%5C%0A%09%26%3Dm_x-%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09R_%7Bxy%7D%26%09%09R_%7Bxz%7D%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09%5Cleft(%20R_y-R_%7Byz%7DR_%7Bz%7D%5E%7B-1%7DR_%7Bzy%7D%20%5Cright)%20%5E%7B-1%7D%26%09%090%5C%5C%0A%09-R_%7Bz%7D%5E%7B-1%7DR_%7Bzy%7D%5Cleft(%20R_y-R_%7Byz%7DR_%7Bz%7D%5E%7B-1%7DR_%7Bzy%7D%20%5Cright)%20%5E%7B-1%7D%26%09%09R_%7Bz%7D%5E%7B-1%7D%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09y-m_y-R_%7Byz%7DR_%7Bz%7D%5E%7B-1%7D%5Cleft(%20z-m_z%20%5Cright)%5C%5C%0A%09z-m_z%5C%5C%0A%5Cend%7Barray%7D%20%5Cright%5D%5C%5C%0A%09%26%3Dm_x-%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09R_%7Bxy%7D%26%09%09R_%7Bxz%7D%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09R_%7Bx%7Cy%7D%5E%7B-1%7D%26%09%090%5C%5C%0A%09-R_%7Bz%7D%5E%7B-1%7DR_%7Bzy%7DR_%7Bx%7Cy%7D%5E%7B-1%7D%26%09%09R_%7Bz%7D%5E%7B-1%7D%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09y-%5Cmathbb%7BE%7D%20%5Cleft(%20y%7Cz%20%5Cright)%5C%5C%0A%09z-m_z%5C%5C%0A%5Cend%7Barray%7D%20%5Cright%5D%5C%5C%0A%09%26%3Dm_x-%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%09R_%7Bxy%7D%26%09%09R_%7Bxz%7D%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%5D%20%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09R_%7Bx%7Cy%7D%5E%7B-1%7D%5Cleft(%20y-%5Cmathbb%7BE%7D%20%5Cleft(%20y%7Cz%20%5Cright)%20%5Cright)%5C%5C%0A%09-R_%7Bz%7D%5E%7B-1%7DR_%7Bzy%7DR_%7Bx%7Cy%7D%5E%7B-1%7D%5Cmathbb%7BE%7D%20%5Cleft(%20y%7Cz%20%5Cright)%20%2BR_%7Bz%7D%5E%7B-1%7D%5Cleft(%20z-m_z%20%5Cright)%5C%5C%0A%5Cend%7Barray%7D%20%5Cright%5D%5C%5C%0A%09%26%3Dm_x-R_%7Bxy%7DR_%7Bx%7Cy%7D%5E%7B-1%7D%5Cleft(%20y-%5Cmathbb%7BE%7D%20%5Cleft(%20y%7Cz%20%5Cright)%20%5Cright)%20-R_%7Bxz%7D%5Cleft(%20-R_%7Bz%7D%5E%7B-1%7DR_%7Bzy%7DR_%7Bx%7Cy%7D%5E%7B-1%7D%5Cleft(%20y-%5Cmathbb%7BE%7D%20%5Cleft(%20y%7Cz%20%5Cright)%20%5Cright)%20%2BR_%7Bz%7D%5E%7B-1%7D%5Cleft(%20z-m_z%20%5Cright)%20%5Cright)%5C%5C%0A%09%26%3D%5Cleft(%20m_x-R_%7Bxz%7DR_%7Bz%7D%5E%7B-1%7D%5Cleft(%20z-m_z%20%5Cright)%20%5Cright)%20%2B%5Cleft(%20m_x-%5Cleft(%20R_%7Bxy%7D-R_%7Bxz%7DR_%7Bz%7D%5E%7B-1%7DR_%7Bzy%7D%20%5Cright)%20R_%7Bx%7Cy%7D%5E%7B-1%7D%5Cleft(%20y-%5Cmathbb%7BE%7D%20%5Cleft(%20y%7Cz%20%5Cright)%20%5Cright)%20%5Cright)%20-m_x%5C%5C%0A%5Cend%7Baligned%7D

其中第三个等号和之前条件概率密度函数的推导思路是一样的,第五个等号开始把y视为了随机变量,不过是随机变量还是常量其实无所谓了吧···反正这里只是一个简化计算的符号

为了得到结论,只需要注意到

%5Cbegin%7Baligned%7D%0A%09%26%5Cmathbb%7BE%7D%20%5Cleft(%20X%5Cleft(%20Y-m_y-R_%7Byz%7DR_%7Bz%7D%5E%7B-1%7D%5Cleft(%20Z-m_z%20%5Cright)%20%5Cright)%20%5ET%20%5Cright)%5C%5C%0A%09%26%3D%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cleft(%20X-m_x%20%5Cright)%20%5Cleft(%20Y-m_y-R_%7Byz%7DR_%7Bz%7D%5E%7B-1%7D%5Cleft(%20Z-m_z%20%5Cright)%20%5Cright)%20%5ET%20%5Cright)%5C%5C%0A%09%26%3DR_%7Bxy%7D-R_%7Bxz%7DR_%7Bz%7D%5E%7B-1%7DR_%7Bzy%7D%5C%5C%0A%5Cend%7Baligned%7D

所以总而言之,上面的式子确实说明了

%5Cmathbb%7BE%7D%20%5Cleft(%20X%7CY%2CZ%20%5Cright)%20%3D%5Cmathbb%7BE%7D%20%5Cleft(%20X%7CZ%20%5Cright)%20%2B%5Cmathbb%7BE%7D%20%5Cleft(%20X%7C%5Cwidetilde%7BY%7D%5Cleft(%20Z%20%5Cright)%20%5Cright)%20-m_x

因为同时也有%5Cmathbb%7BE%7D%20%5Cleft(%20X%7CZ%2C%5Cwidetilde%7BY%7D%5Cleft(%20Z%20%5Cright)%20%5Cright)%20%3D%5Cmathbb%7BE%7D%20%5Cleft(%20X%7CZ%20%5Cright)%20%2B%5Cmathbb%7BE%7D%20%5Cleft(%20X%7C%5Cwidetilde%7BY%7D%5Cleft(%20Z%20%5Cright)%20%5Cright)%20-m_x,而Z%2C%5Cwidetilde%7BY%7D%5Cleft(%20Z%20%5Cright)%20之间是相互独立的,所以上面的过程也可以看成把YZ无关的部分提取了出来再做利用先去的结论

有了这些结论,接下来就可以计算%5Chat%7Bx%7D%5Cleft(%20k%7Ck%20%5Cright)%20%3D%5Cmathbb%7BE%7D%20%5Cleft(%20x%5Cleft(%20k%20%5Cright)%20%7Cy%5Cleft(%201%20%5Cright)%20%2Cy%5Cleft(%202%20%5Cright)%20%2C%5Ccdots%20%2Cy%5Cleft(%20k%20%5Cright)%20%5Cright)%20

%5Cbegin%7Baligned%7D%0A%09%26%5Cmathbb%7BE%7D%20%5Cleft(%20x%5Cleft(%20k%20%5Cright)%20%7Cy%5Cleft(%201%20%5Cright)%20%2Cy%5Cleft(%202%20%5Cright)%20%2C%5Ccdots%20%2Cy%5Cleft(%20k%20%5Cright)%20%5Cright)%5C%5C%0A%09%26%3D%5Cmathbb%7BE%7D%20%5Cleft(%20x%5Cleft(%20k%20%5Cright)%20%7Cy%5Cleft(%201%20%5Cright)%20%2Cy%5Cleft(%202%20%5Cright)%20%2C%5Ccdots%20%2Cy%5Cleft(%20k-1%20%5Cright)%20%5Cright)%20%2B%5Cmathbb%7BE%7D%20%5Cleft(%20x%5Cleft(%20k%20%5Cright)%20%7C%5Cwidetilde%7By%7D%5Cleft(%20k%7Ck%20%5Cright)%20%5Cright)%20-m_0%5C%5C%0A%09%26%3D%5Cmathbb%7BE%7D%20%5Cleft(%20%5CvarPhi%20x%5Cleft(%20k-1%20%5Cright)%20%2B%5Cxi%20%5Cleft(%20k-1%20%5Cright)%20%7Cy%5Cleft(%201%20%5Cright)%20%2C%5Ccdots%20%2Cy%5Cleft(%20k-1%20%5Cright)%20%5Cright)%5C%5C%0A%09%26%2B%5Cmathbb%7BE%7D%20%5Cleft(%20x%5Cleft(%20k%20%5Cright)%20%7C%5Cwidetilde%7By%7D%5Cleft(%20k%7Ck-1%20%5Cright)%20%5Cright)%20-m_0%5C%5C%0A%09%26%3D%5CvarPhi%20%5Cmathbb%7BE%7D%20%5Cleft(%20x%5Cleft(%20k-1%20%5Cright)%20%7Cy%5Cleft(%201%20%5Cright)%20%2C%5Ccdots%20%2Cy%5Cleft(%20k-1%20%5Cright)%20%5Cright)%20%2B%5Cmathbb%7BE%7D%20%5Cleft(%20x%5Cleft(%20k%20%5Cright)%20%7C%5Cwidetilde%7By%7D%5Cleft(%20k%7Ck-1%20%5Cright)%20%5Cright)%20-m_0%5C%5C%0A%09%26%3D%5CvarPhi%20%5Cmathbb%7BE%7D%20%5Cleft(%20x%5Cleft(%20k-1%20%5Cright)%20%7Cy%5Cleft(%201%20%5Cright)%20%2C%5Ccdots%20%2Cy%5Cleft(%20k-1%20%5Cright)%20%5Cright)%20%2BR_%7Bx%5Cleft(%20k%20%5Cright)%20%5Cwidetilde%7By%7D%5Cleft(%20k%7Ck-1%20%5Cright)%7DR_%7B%5Cwidetilde%7By%7D%5Cleft(%20k%7Ck-1%20%5Cright)%7D%5E%7B-1%7D%5Cwidetilde%7By%7D%5Cleft(%20k%7Ck-1%20%5Cright)%5C%5C%0A%5Cend%7Baligned%7D

其中第三个等号是因为%5Ceta(k-1)y%5Cleft(%201%20%5Cright)%20%2C%5Ccdots%20%2Cy%5Cleft(%20k-1%20%5Cright)%20都是无关的,下面就来计算一下第三个等号的第二项的各个系数,首先有

%5Cbegin%7Baligned%7D%0A%09%26%5Cwidetilde%7By%7D%5Cleft(%20k%7Ck-1%20%5Cright)%20%3Dy%5Cleft(%20k%20%5Cright)%20-%5Cmathbb%7BE%7D%20%5Cleft(%20y%5Cleft(%20k%20%5Cright)%20%7Cy%5Cleft(%201%20%5Cright)%20%2C%5Ccdots%20%2Cy%5Cleft(%20k-1%20%5Cright)%20%5Cright)%5C%5C%0A%09%26%3Dy%5Cleft(%20k%20%5Cright)%20-%5Cmathbb%7BE%7D%20%5Cleft(%20%5CvarTheta%20x%5Cleft(%20k%20%5Cright)%20%2B%5Cxi%20%5Cleft(%20k%20%5Cright)%20%7Cy%5Cleft(%201%20%5Cright)%20%2C%5Ccdots%20%2Cy%5Cleft(%20k-1%20%5Cright)%20%5Cright)%5C%5C%0A%09%26%3Dy%5Cleft(%20k%20%5Cright)%20-%5CvarTheta%20%5Cmathbb%7BE%7D%20%5Cleft(%20x%5Cleft(%20k%20%5Cright)%20%7Cy%5Cleft(%201%20%5Cright)%20%2C%5Ccdots%20%2Cy%5Cleft(%20k-1%20%5Cright)%20%5Cright)%5C%5C%0A%09%26%3D%5CvarTheta%20x%5Cleft(%20k%20%5Cright)%20%2B%5Ceta%20%5Cleft(%20k%20%5Cright)%20-%5CvarTheta%20%5Cmathbb%7BE%7D%20%5Cleft(%20x%5Cleft(%20k%20%5Cright)%20%7Cy%5Cleft(%201%20%5Cright)%20%2C%5Ccdots%20%2Cy%5Cleft(%20k-1%20%5Cright)%20%5Cright)%5C%5C%0A%09%26%3D%5CvarTheta%20%5Cwidetilde%7Bx%7D%5Cleft(%20k%7Ck-1%20%5Cright)%20%2B%5Ceta%20%5Cleft(%20k%20%5Cright)%5C%5C%0A%5Cend%7Baligned%7D

那么

%5Cbegin%7Baligned%7D%0A%09%26R_%7Bx%5Cleft(%20k%20%5Cright)%20%5Cwidetilde%7By%7D%5Cleft(%20k%7Ck-1%20%5Cright)%7D%5C%5C%0A%09%26%3D%5Cmathbb%7BE%7D%20%5Cleft(%20x%5Cleft(%20k%20%5Cright)%20%5Cleft(%20%5Cwidetilde%7By%7D%5Cleft(%20k%7Ck-1%20%5Cright)%20%5Cright)%20%5ET%20%5Cright)%20%3D%5C%5C%0A%09%26%3D%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cleft(%20x%5Cleft(%20k%20%5Cright)%20-m_%7Bx%5Cleft(%20k%20%5Cright)%7D%20%5Cright)%20%5Cleft(%20%5CvarTheta%20%5Cwidetilde%7Bx%7D%5Cleft(%20k%7Ck-1%20%5Cright)%20%2B%5Ceta%20%5Cleft(%20k%20%5Cright)%20%5Cright)%20%5ET%20%5Cright)%5C%5C%0A%09%26%3D%5Cwidetilde%7Bx%7D%5Cleft(%20k%7Ck-1%20%5Cright)%20%5Cwidetilde%7Bx%7D%5ET%5Cleft(%20k%7Ck-1%20%5Cright)%20%5CvarTheta%20%5ET%5C%5C%0A%5Cend%7Baligned%7D

其中第三个等号是因为

%5Cbegin%7Baligned%7D%0A%09%26%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cleft(%20x-%5Cmathbb%7BE%7D%20%5Cleft(%20x%7Cy%20%5Cright)%20%5Cright)%20%5Cmathbb%7BE%7D%20_%7B%7D%5E%7BT%7D%5Cleft(%20x%7Cy%20%5Cright)%20%5Cright)%5C%5C%0A%09%26%3D%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cleft(%20x-m_x%2BR_%7Bxy%7DR_%7By%7D%5E%7B-1%7D%5Cleft(%20y-m_y%20%5Cright)%20%5Cright)%20%5Cleft(%20m_x-R_%7Bxy%7DR_%7By%7D%5E%7B-1%7D%5Cleft(%20y-m_y%20%5Cright)%20%5Cright)%20%5ET%20%5Cright)%5C%5C%0A%09%26%3D%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cleft(%20x-m_x%20%5Cright)%20%5Cleft(%20y-m_y%20%5Cright)%20%5ETR_%7By%7D%5E%7B-1%7DR_%7Byx%7D-R_%7Bxy%7DR_%7By%7D%5E%7B-1%7D%5Cleft(%20y-m_y%20%5Cright)%20%5Cleft(%20y-m_y%20%5Cright)%20%5ETR_%7By%7D%5E%7B-1%7DR_%7Byx%7D%20%5Cright)%5C%5C%0A%09%26%3D0%5C%5C%0A%5Cend%7Baligned%7D

现在记%5Cwidetilde%7Bx%7D%5Cleft(%20k%7Ck-1%20%5Cright)%20%5Cwidetilde%7Bx%7D%5ET%5Cleft(%20k%7Ck-1%20%5Cright)%20%3DP%5Cleft(%20k%7Ck-1%20%5Cright)%20,则R_%7Bx%5Cleft(%20k%20%5Cright)%20%5Cwidetilde%7By%7D%5Cleft(%20k%7Ck-1%20%5Cright)%7D%3DP%5Cleft(%20k%7Ck-1%20%5Cright)%20%5CvarTheta%20%5ET

同理

%5Cbegin%7Baligned%7D%0A%09%26R_%7B%5Cwidetilde%7By%7D%5Cleft(%20k%20%5Cright)%7D%3D%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cleft(%20%5CvarTheta%20%5Cwidetilde%7Bx%7D%5Cleft(%20k%7Ck-1%20%5Cright)%20%2B%5Ceta%20%5Cleft(%20k%20%5Cright)%20%5Cright)%20%5Cleft(%20%5CvarTheta%20%5Cwidetilde%7Bx%7D%5Cleft(%20k%7Ck-1%20%5Cright)%20%2B%5Ceta%20%5Cleft(%20k%20%5Cright)%20%5Cright)%20%5ET%20%5Cright)%5C%5C%0A%09%26%3D%5CvarTheta%20P%5Cleft(%20k%7Ck-1%20%5Cright)%20%5CvarTheta%20%5ET%2BR_2%5C%5C%0A%5Cend%7Baligned%7D

现在尚且需要得到P%5Cleft(%20k%7Ck-1%20%5Cright)%20的递推关系式,因为

%5Cbegin%7Baligned%7D%0A%09%26%5Cwidetilde%7Bx%7D%5Cleft(%20k%7Ck-1%20%5Cright)%20%3Dx%5Cleft(%20k%20%5Cright)%20-%5Cwidehat%7Bx%7D%5Cleft(%20k%7Ck-1%20%5Cright)%5C%5C%0A%09%26%3D%5CvarPhi%20x%5Cleft(%20k-1%20%5Cright)%20%2B%5Cxi%20%5Cleft(%20k-1%20%5Cright)%20-%5Cmathbb%7BE%7D%20%5Cleft(%20x%5Cleft(%20k%20%5Cright)%20%7Cy%5Cleft(%201%20%5Cright)%20%2C%5Ccdots%20y%5Cleft(%20n-1%20%5Cright)%20%5Cright)%5C%5C%0A%09%26%3D%5CvarPhi%20x%5Cleft(%20k-1%20%5Cright)%20%2B%5Cxi%20%5Cleft(%20k-1%20%5Cright)%20-%5Cmathbb%7BE%7D%20%5Cleft(%20x%5Cleft(%20k-1%20%5Cright)%20%2B%5Cxi%20%5Cleft(%20k-1%20%5Cright)%20%7Cy%5Cleft(%201%20%5Cright)%20%2C%5Ccdots%20y%5Cleft(%20n-1%20%5Cright)%20%5Cright)%5C%5C%0A%09%26%3D%5CvarPhi%20%5Ctilde%7Bx%7D%5Cleft(%20k-1%7Ck-1%20%5Cright)%20%2B%5Cxi%20%5Cleft(%20k-1%20%5Cright)%5C%5C%0A%5Cend%7Baligned%7D

所以

%5Cbegin%7Baligned%7D%0A%09%26P%5Cleft(%20k%7Ck-1%20%5Cright)%20%3D%5Cwidetilde%7Bx%7D%5Cleft(%20k%7Ck-1%20%5Cright)%20%5Cwidetilde%7Bx%5ET%7D%5Cleft(%20k%7Ck-1%20%5Cright)%5C%5C%0A%09%26%3D%5Cleft(%20%5CvarPhi%20%5Ctilde%7Bx%7D%5Cleft(%20k-1%7Ck-1%20%5Cright)%20%2B%5Cxi%20%5Cleft(%20k-1%20%5Cright)%20%5Cright)%20%5Cleft(%20%5CvarPhi%20%5Ctilde%7Bx%7D%5Cleft(%20k-1%7Ck-1%20%5Cright)%20%2B%5Cxi%20%5Cleft(%20k-1%20%5Cright)%20%5Cright)%20%5ET%5C%5C%0A%09%26%3D%5CvarPhi%20%5Ctilde%7Bx%7D%5Cleft(%20k-1%7Ck-1%20%5Cright)%20%5Ctilde%7Bx%7D%5ET%5Cleft(%20k-1%7Ck-1%20%5Cright)%20%5CvarPhi%20%5ET%2BR_1%5C%5C%0A%09%26%5Ctriangleq%20%5CvarPhi%20P%5Cleft(%20k-1%7Ck-1%20%5Cright)%20%5CvarPhi%20%5ET%2BR_1%5C%5C%0A%5Cend%7Baligned%7D

这样一来,就得到了一个递推关系:在已知%5Chat%7Bx%7D%5Cleft(%20k-1%7Ck-1%20%5Cright)%20的情况下,可以计算出P%5Cleft(%20k-1%7Ck-1%20%5Cright)%20,进而可以计算出P%5Cleft(%20k%7Ck-1%20%5Cright)%20,据此又可以算出R_%7Bx%5Cleft(%20k%20%5Cright)%20%5Cwidetilde%7By%7D%5Cleft(%20k%20%5Cright)%7D%2CR_%7B%5Cwidetilde%7By%7D%5Cleft(%20k%20%5Cright)%7D%5E%7B-1%7D,此外根据%5Chat%7Bx%7D%5Cleft(%20k-1%7Ck-1%20%5Cright)%20还可以计算出%5Cwidetilde%7Bx%7D%5Cleft(%20k%7Ck-1%20%5Cright)%20,进而算出%5Cwidetilde%7By%7D%5Cleft(%20k%7Ck-1%20%5Cright)%20,有了这些,就可以求出%5Chat%7Bx%7D%5Cleft(%20k%7Ck%20%5Cright)%20了,这样就完成了一次迭代

写到这里其实已经推导完了,不过和课本上的格式不太一样,为了规范还是按课本上的来吧

K%5Cleft(%20k%7Ck%20%5Cright)%20%3DR_%7Bx%5Cleft(%20k%20%5Cright)%20%5Cwidetilde%7By%7D%5Cleft(%20k%20%5Cright)%7DR_%7B%5Cwidetilde%7By%7D%5Cleft(%20k%20%5Cright)%7D%5E%7B-1%7D,那么之前的递推式就可以写成

%5Cbegin%7Baligned%7D%0A%09%26%5Cwidehat%7Bx%7D%5Cleft(%20k%7Ck%20%5Cright)%5C%5C%0A%09%26%3D%5CvarPhi%20%5Cwidehat%7Bx%7D%5Cleft(%20k-1%7Ck-1%20%5Cright)%20%2BK%5Cleft(%20k%7Ck%20%5Cright)%20%5Cleft(%20%5Cwidetilde%7By%7D%5Cleft(%20k%7Ck-1%20%5Cright)%20%5Cright)%5C%5C%0A%09%26%3D%5CvarPhi%20%5Cwidehat%7Bx%7D%5Cleft(%20k-1%7Ck-1%20%5Cright)%20%2BK%5Cleft(%20k%7Ck%20%5Cright)%20%5Cleft(%20y%5Cleft(%20k%20%5Cright)%20-%5CvarTheta%20%5CvarPhi%20%5Cwidehat%7Bx%7D%5Cleft(%20k-1%7Ck-1%20%5Cright)%20%5Cright)%5C%5C%0A%5Cend%7Baligned%7D

其中第二个等号由之前%5Cwidetilde%7By%7D%5Cleft(%20k%7Ck-1%20%5Cright)%20的推导的第三个等号可以得到

K%5Cleft(%20k%7Ck%20%5Cright)%20%3DR_%7Bx%5Cleft(%20k%20%5Cright)%20%5Cwidetilde%7By%7D%5Cleft(%20k%20%5Cright)%7DR_%7B%5Cwidetilde%7By%7D%5Cleft(%20k%20%5Cright)%7D%5E%7B-1%7D%3DP%5Cleft(%20k%7Ck-1%20%5Cright)%20%5CvarTheta%20%5ET%5Cleft(%20%5CvarTheta%20P%5Cleft(%20k%7Ck-1%20%5Cright)%20%5CvarTheta%20%5ET%2BR_2%20%5Cright)%20%5E%7B-1%7D

因为

%5Cbegin%7Baligned%7D%0A%09%5Cwidehat%7Bx%7D%5Cleft(%20k%7Ck%20%5Cright)%20%26%3D%5Cwidehat%7Bx%7D%5Cleft(%20k%7Ck-1%20%5Cright)%20%2BK%5Cleft(%20k%7Ck%20%5Cright)%20%5Cleft(%20%5Ctilde%7By%7D%5Cleft(%20k%7Ck-1%20%5Cright)%20%5Cright)%5C%5C%0A%09%26%3D%5Cwidehat%7Bx%7D%5Cleft(%20k%7Ck-1%20%5Cright)%20%2BK%5Cleft(%20k%7Ck%20%5Cright)%20%5Cleft(%20%5CvarTheta%20%5Ctilde%7Bx%7D%5Cleft(%20k%7Ck-1%20%5Cright)%20%2B%5Ceta%20%5Cleft(%20k%20%5Cright)%20%5Cright)%5C%5C%0A%5Cend%7Baligned%7D

%5Cbegin%7Baligned%7D%0A%09%26%5Cwidetilde%7Bx%7D%5Cleft(%20k%7Ck%20%5Cright)%20%3Dx%5Cleft(%20k%20%5Cright)%20-%5Cwidehat%7Bx%7D%5Cleft(%20k%7Ck%20%5Cright)%5C%5C%0A%09%26%3Dx%5Cleft(%20k%20%5Cright)%20-%5Cleft(%20%5Cwidehat%7Bx%7D%5Cleft(%20k%7Ck-1%20%5Cright)%20%2BK%5Cleft(%20k%7Ck%20%5Cright)%20%5Cleft(%20%5CvarTheta%20%5Ctilde%7Bx%7D%5Cleft(%20k%7Ck-1%20%5Cright)%20%2B%5Ceta%20%5Cleft(%20k%20%5Cright)%20%5Cright)%20%5Cright)%5C%5C%0A%09%26%3D%5Cleft(%20I-K%5Cleft(%20k%7Ck%20%5Cright)%20%5CvarTheta%20%5Cright)%20%5Ctilde%7Bx%7D%5Cleft(%20k%7Ck-1%20%5Cright)%20-K%5Cleft(%20k%7Ck%20%5Cright)%20%5Ceta%20%5Cleft(%20k%20%5Cright)%5C%5C%0A%5Cend%7Baligned%7D

所以

%5Cbegin%7Baligned%7D%0A%09%26P(k%5Cmid%20k)%3D%5Cmathbb%7BE%7D%20%5Cleft(%20%5Ctilde%7Bx%7D(k%5Cmid%20k)%5Ctilde%7Bx%7D%5E%7B%5Cmathrm%7BT%7D%7D(k%5Cmid%20k)%20%5Cright)%5C%5C%0A%09%3D%26%5BI-K(k%5Cmid%20k)%5CTheta%20%5DP(k%5Cmid%20k-1)%5BI-K(k%5Cmid%20k)%5CTheta%20%5D%5E%7B%5Cmathrm%7BT%7D%7D%5C%5C%0A%09%26%2BK(k%5Cmid%20k)R_2K(k%5Cmid%20k)%5C%5C%0A%5Cend%7Baligned%7D

进一步化简可得

P(k%5Cmid%20k)%3D%5BI-K(k%5Cmid%20k)%5CTheta%20%5DP(k%5Cmid%20k-1)

(这两个公式我直接抄书了,实在太复杂了)

总之这样一来就可以得到计算%5Cwidehat%7Bx%7D%5Cleft(%20k%7Ck%20%5Cright)%20的方法了,如下图所示

这和我之前讲的方法应该是一样的(大概吧),为了方便观看再把相关的公式贴出来一下吧,其实相关的推导都在上面了

这个推导可以说是又臭又长了,所以再次建议大家看看我在一开始发的那个链接上的推导,那个推导更接近本质。不过不管怎么说,这个推导我觉得更加直接,没有那么多弯弯绕绕,对于一个初学的人来说,虽然可能不会真的去把每一个公式都验证一遍(除非像我这么闲),但是也能很快的知道一个大致的思路,只能说各有所长吧···

接下来如果我还有雅兴的话,大概会试着应用一下这个玩意吧,如果没有雅兴就没了。

复习笔记Day121:卡尔曼滤波的推导的评论 (共 条)

分享到微博请遵守国家法律