欢迎光临散文网 会员登陆 & 注册

为极坐标量身打造的解析几何(2023全国甲圆锥曲线)

2023-06-12 13:43 作者:数学老顽童  | 我要投稿

(2023全国甲,20)设抛物线Cy%5E2%3D2pxp%3E0),直线x-2y%2B1%3D0C交于AB两点,且%5Cleft%7C%20AB%20%5Cright%7C%3D4%5Csqrt%7B15%7D.

(1)求p

(2)设C的焦点为FMNC上两点,%5Coverrightarrow%7BMF%7D%5Ccdot%20%5Coverrightarrow%7BNF%7D%3D0,求%5Cbigtriangleup%20MNF面积的最小值.

解:(1)设AB两点的坐标分别为

%5Cleft(%20x_1%2Cy_1%20%5Cright)%20%5Cleft(%20x_2%2Cy_2%20%5Cright)%20

联立抛物线与直线,得y%5E2-4py%2B2p%3D0

所以y_1%2By_2%3D4py_1y_2%3D2p,所以

%5Cbegin%7Baligned%7D%0A%09%5Cleft%7C%20AB%20%5Cright%7C%26%3D%5Csqrt%7B2%5E2%2B1%7D%5Ccdot%20%5Csqrt%7B%5Cleft(%20y_1%2By_2%20%5Cright)%20%5E2-4y_1y_2%7D%5C%5C%0A%09%26%3D%5Csqrt%7B5%7D%5Ccdot%20%5Csqrt%7B%5Cleft(%204p%20%5Cright)%20%5E2-4%5Ccdot%202p%7D%5C%5C%0A%09%26%3D%5Ccolor%7Bred%7D%7B2%5Csqrt%7B10%7D%5Ccdot%20%5Csqrt%7B2p%5E2-p%7D%3D4%5Csqrt%7B15%7D%7D%5C%5C%0A%5Cend%7Baligned%7D

整理得,2p%5E2-p-6%3D0

解得%5Ccolor%7Bred%7D%7Bp%3D2%7D.

(2)以F为极点,以Fx为极轴,建立极坐标系,

易知C的极坐标方程为%5Ccolor%7Bred%7D%7B%5Crho%3D%5Cfrac%7B2%7D%7B1-%5Ccos%20%20%5Ctheta%7D%7D

MN的极角分别为%5Calpha%20%5Calpha%20%2B%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20

%5Ccolor%7Bred%7D%7B%5Crho_M%3D%5Cfrac%7B2%7D%7B1-%5Ccos%20%20%5Calpha%20%7D%7D

%5Ccolor%7Bred%7D%7B%5Crho%20_N%3D%7D%5Cfrac%7B2%7D%7B1-%5Ccos%20%5Cleft(%20%5Calpha%20%2B%5Cfrac%7B%5Cmathrm%7B%5Cpi%7D%7D%7B2%7D%20%5Cright)%7D%3D%5Ccolor%7Bred%7D%7B%5Cfrac%7B2%7D%7B1%2B%5Csin%20%20%5Calpha%7D%7D.

所以

%5Cbegin%7Baligned%7D%0A%09S_%7B%5Cbigtriangleup%20MFN%7D%26%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft%7C%20MF%20%5Cright%7C%5Ccdot%20%5Cleft%7C%20NF%20%5Cright%7C%3D%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%5Crho%20_M%5Ccdot%20%5Crho%20_N%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%5Cfrac%7B2%7D%7B1-%5Ccos%20%5Calpha%7D%5Ccdot%20%5Cfrac%7B2%7D%7B1%2B%5Csin%20%5Calpha%7D%5C%5C%0A%09%26%3D%5Cfrac%7B2%7D%7B1%2B%5Csin%20%5Calpha%20-%5Ccos%20%5Calpha%20-%5Ccolor%7Bred%7D%7B%5Csin%20%5Calpha%20%5Ccos%20%5Calpha%7D%7D%5C%5C%0A%09%26%3D%5Cfrac%7B2%7D%7B1%2B%5Csin%20%5Calpha%20-%5Ccos%20%5Calpha%20-%5Ccolor%7Bred%7D%7B%5Cfrac%7B1-%5Cleft(%20%5Csin%20%5Calpha%20-%5Ccos%20%5Calpha%20%5Cright)%20%5E2%7D%7B2%7D%7D%7D%5C%5C%0A%09%26%3D%5Cfrac%7B4%7D%7B%5Cleft(%20%5Csin%20%5Calpha%20-%5Ccos%20%5Calpha%20%2B1%20%5Cright)%20%5E2%7D%5C%5C%0A%09%26%3D%5Cfrac%7B4%7D%7B%5Cleft%5B%20%5Csqrt%7B2%7D%5Csin%20%5Cleft(%20%5Calpha%20-%5Cfrac%7B%5Cmathrm%7B%5Cpi%7D%7D%7B4%7D%20%5Cright)%20%2B1%20%5Cright%5D%20%5E2%7D%5C%5C%0A%09%26%5Cgeqslant%20%5Cfrac%7B4%7D%7B%5Cleft(%20%5Csqrt%7B2%7D%2B1%20%5Cright)%20%5E2%7D%3D%5Ccolor%7Bred%7D%7B12-8%5Csqrt%7B2%7D%7D%5C%5C%0A%5Cend%7Baligned%7D

%5Cbigtriangleup%20MFN%0A面积的最小值为%5Ccolor%7Bred%7D%7B12-8%5Csqrt%7B2%7D%7D.

当且仅当%5Ccolor%7Bred%7D%7B%5Calpha%20%3D%5Cfrac%7B3%5Cmathrm%7B%5Cpi%7D%7D%7B4%7D%2B2k%5Cmathrm%7B%5Cpi%7D%7Dk%5Cin%20%5Cmathbf%7BZ%7D)时,取得最小值.


为极坐标量身打造的解析几何(2023全国甲圆锥曲线)的评论 (共 条)

分享到微博请遵守国家法律