欢迎光临散文网 会员登陆 & 注册

[Arithmetic] Babylonian Numerals

2021-11-23 10:20 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (郑涛)

【Problem】

The ancient Babylonians adopted a sexagesimal (base 60) place-value system for calculation. For example, the number  %7B%5Cleft(2%2C3%2C17%20%5Cright)%7D_%7B60%7D in base 60 is equal to the number 7397 in base 10.


%5Cbegin%7Balign%7D%0A%7B(2%2C3%2C17)%7D_%7B60%7D%20%26%3D%202%20%5Ctimes%2060%5E2%20%2B%203%20%5Ctimes%2060%5E1%20%2B%2017%20%5Ctimes%2060%5E0%20%5C%5C%0A%7B(2%2C3%2C17)%7D_%7B60%7D%20%26%3D%202%20%5Ctimes%203600%20%2B%203%20%5Ctimes%2060%20%2B%2017%20%5Ctimes%201%20%5C%5C%0A%7B(2%2C3%2C17)%7D_%7B60%7D%20%26%3D%207397%0A%5Cend%7Balign%7D


Here, the commas separate the digits of each place value  60%5E0%2C%2060%5E1%2C%2060%5E2%2C%2060%5E3%2C%20...%20 etc. Another example, the number %7B%5Cleft(1%2C2%3B7%2C3%20%5Cright)%7D_%7B60%7D in base 60 is equal to the number 62.1175 in base 10.


%5Cbegin%7Balign%7D%0A%7B(1%2C2%3B7%2C3)%7D_%7B60%7D%20%26%3D%201%20%5Ctimes%2060%5E1%20%2B%202%20%5Ctimes%2060%5E0%20%2B%20%5Cfrac%7B7%7D%7B60%5E1%7D%20%2B%20%5Cfrac%7B3%7D%7B60%5E2%7D%20%5C%5C%0A%7B(1%2C2%3B7%2C3)%7D_%7B60%7D%20%26%3D%201%20%5Ctimes%2060%20%2B%202%20%5Ctimes%201%2B%20%5Cfrac%7B7%7D%7B60%7D%20%2B%20%5Cfrac%7B3%7D%7B3600%7D%20%5C%5C%20%20%0A%7B(1%2C2%3B7%2C3)%7D_%7B60%7D%20%26%3D%201%20%5Ctimes%2060%20%2B%202%20%5Ctimes%201%2B%20%5Cfrac%7B7%7D%7B60%7D%20%2B%20%5Cfrac%7B1%7D%7B1200%7D%20%5C%5C%0A%7B(1%2C2%3B7%2C3)%7D_%7B60%7D%20%26%3D%2062%20%5Cfrac%7B47%7D%7B400%7D%0A%5Cend%7Balign%7D

Here, the semicolon acts like a decimal point and the following commas separate the digits of each place value %20%7B60%7D%5E%7B-1%7D%2C%20%7B60%7D%5E%7B-2%7D%2C%20%7B60%7D%5E%7B-3%7D%2C%20%7B60%7D%5E%7B-4%7D%2C%20...%20 etc.

The ancient Babylonians also invented the concept of zero long before the ancient Indians; however, the Babylonian zero served as a placeholder for writing numbers where certain place-values are not a number between 1 and 59.

Problem 1: Convert the number %7B(13%2C0%2C21)%7D_%7B60%7D%20 to base 10.

Problem 2: Convert the number %7B(3%3B45%2C30)%7D_%7B60%7D to base 10.

Problem 3: Convert the number %7B(2%2C3%3B18%2C14%2C24)%7D_%7B60%7Dto base 10.

【Solution】

Problem 1

%20%5Cbegin%7Balign%7D%0A%7B(13%2C0%2C21)%7D_%7B60%7D%20%26%3D%2013%20%5Ctimes%2060%5E2%20%2B%200%20%5Ctimes%2060%5E1%20%2B%2021%20%5Ctimes%2060%5E0%20%5C%5C%0A%7B(13%2C0%2C21)%7D_%7B60%7D%20%26%3D%2013%20%5Ctimes%203600%20%2B%200%20%5Ctimes%2060%20%2B%2021%20%5Ctimes%201%20%5C%5C%0A%7B(13%2C0%2C21)%7D_%7B60%7D%20%26%3D%2046800%20%2B%200%20%2B%2021%20%5C%5C%0A%7B(13%2C0%2C21)%7D_%7B60%7D%20%26%3D%2046821%0A%5Cend%7Balign%7D


Problem 2

%5Cbegin%7Balign%7D%0A%7B(3%3B45%2C30)%7D_%7B60%7D%20%26%3D%203%20%5Ctimes%2060%5E0%20%2B%20%5Cfrac%7B45%7D%7B60%5E1%7D%20%2B%20%5Cfrac%7B30%7D%7B60%5E2%7D%20%5C%5C%0A%7B(13%2C0%2C21)%7D_%7B60%7D%20%26%3D%203%20%5Ctimes%201%20%2B%20%5Cfrac%7B45%7D%7B60%7D%20%2B%20%5Cfrac%7B30%7D%7B3600%7D%20%5C%5C%0A%7B(13%2C0%2C21)%7D_%7B60%7D%20%26%3D%203%20%2B%20%5Cfrac%7B3%7D%7B4%7D%20%2B%20%5Cfrac%7B1%7D%7B120%7D%20%5C%5C%0A%7B(13%2C0%2C21)%7D_%7B60%7D%20%26%3D%203%20%5Cfrac%7B91%7D%7B120%7D%0A%5Cend%7Balign%7D


Problem 3

%5Cbegin%7Balign%7D%0A%7B(2%2C3%3B18%2C14%2C24)%7D_%7B60%7D%20%26%3D%202%20%5Ctimes%2060%5E1%20%2B%203%20%5Ctimes%2060%5E0%20%2B%20%5Cfrac%7B18%7D%7B60%5E1%7D%20%2B%20%5Cfrac%7B14%7D%7B60%5E2%7D%20%2B%20%5Cfrac%7B24%7D%7B60%5E3%7D%20%5C%5C%0A%7B(2%2C3%3B18%2C14%2C24)%7D_%7B60%7D%20%26%3D%202%20%5Ctimes%2060%20%2B%203%20%5Ctimes%201%2B%20%5Cfrac%7B18%7D%7B60%7D%20%2B%20%5Cfrac%7B14%7D%7B3600%7D%20%2B%20%5Cfrac%7B24%7D%7B216000%7D%20%5C%5C%0A%7B(2%2C3%3B18%2C14%2C24)%7D_%7B60%7D%20%26%3D%20120%20%2B%203%20%2B%20%5Cfrac%7B3%7D%7B10%7D%20%2B%20%5Cfrac%7B7%7D%7B1800%7D%20%2B%20%5Cfrac%7B1%7D%7B9000%7D%20%5C%5C%0A%7B(2%2C3%3B18%2C14%2C24)%7D_%7B60%7D%20%26%3D%20123%20%5Cfrac%7B38%7D%7B125%7D%0A%5Cend%7Balign%7D



[Arithmetic] Babylonian Numerals的评论 (共 条)

分享到微博请遵守国家法律