欢迎光临散文网 会员登陆 & 注册

Electromagnetism||Electrostatics

2021-01-18 10:09 作者:湮灭的末影狐  | 我要投稿

//I'm here in Nankai University. 

//And next term we will have an Italian professor... to teach Electromagnetism.

//And obviously it will be completely taught in English.

//So I write this note, simply to practice English...so I won't be overwhelmed...

//Let's start it.

1. Electrostatics: charges and fields

1.1 Electric charge

All charged particles can be divided into two classes. Two charges of the same class repel each other, while two charges of different classes attract each other. (By contrast, there's only one kind of gravitational mass, so every mass attract every other mass.)

This is a fundamental property of an electric charge, sign of the charge: positive or negative.

For every kind of particle in nature there can exist an antiparticle carrying charge of the opposite sign, with exactly the same mass. When a particle meets its antiparticle, they annihilate and produce energy. For example, an electron's charge is negative; its antiparticle called positron has a positive charge.

1.2 Conservation

Electric charge has an essential property that:

The total charge in an isolated system never changes.

This is called the conservation of charge. This law can be written in different forms:

%5Csum_%7B%5Crm%20in%7DQ_i%20%3D%20%5Crm%20Const

%5CDelta%20Q%20%3DQ_%7B%5Crm%20in%7D-Q_%7B%5Crm%20out%7D

or we can associate this law with electric current:

%5Ciint_S%20%5Cvec%7Bj%7D%20%5Ccdot%20%5Cmathrm%7Bd%7D%20%5Cvec%7BS%7D%3D-%5Cfrac%7B%5Cmathrm%7Bd%7D%20Q%7D%7B%5Cmathrm%7B~d%7D%20t%7D

where Q is the total charge inside the surface S. We also have differential form:

%5Cnabla%20%5Ccdot%20%5Cvec%20j%20%2B%20%5Cfrac%7B%5Cpartial%20%5Crho%7D%7B%5Cpartial%20t%7D%3D0

1.3 Quantization of charge

The electric charges we find in nature come in units of one magnitude only, equal to the amont of charge carried by a single electron. We denote its magnitude by e.

But there is internal structure of all the strongly interacting particles called hadrons, including protons and neutrons. The internal structure involves basic units called quarks, with charge 2e%2F3 or -e%2F3.

1.4 Coulomb's law

Coulomb's law describes the interaction between two point electric charges at rest:

%5Cvec%20F_%7B12%7D%20%3D%20k%20%5Cfrac%7Bq_1%20q_2%7D%7Br_%7B12%7D%5E2%7D%20%5Chat%20r_%7B12%7D


Two point charges

Also the force obeys Newton's 3rd law:

%5Cvec%20F_%7B12%7D%3D-%5Cvec%20F_%7B21%7D

k%3D8.988%20%5Ctimes%2010%5E9%20%5Crm%20N%20%5Ccdot%20m%20%5Ccdot%20C%5E%7B-2%7D is a constant, and for historical reason, 

k%3D%20%5Cfrac1%7B4%5Cpi%20%5Cepsilon_0%7D

where %5Cepsilon_0 is called vacuum dielectric constant.

1.5 Energy of a system of charges

According to Coulomb's law, we know electrical forces are conservative, so we introduce a useful concept, energy. Consider two charged particals with charge q_1%2Cq_2 respectively are brought together from very far, and the ultimate distance between them is r, How much work must be done?

move a partical from very far

W%3D%20%5Cint%20_%5Cinfty%20%5Er%20-%20%5Cfrac%7Bq_1%20q_2%7D%7B4%5Cpi%20%5Cepsilon_0%20r%5E2%7D%5Cmathrm%20d%20r%3D%20%20%5Cfrac%7Bq_1%20q_2%7D%7B4%5Cpi%20%5Cepsilon_0%20r%7D

So the energy between these two particles is equal to W. This work is the same whatever the path of approach. For a system with N particles, total electrostatic energy is

U%3D%20%5Cfrac12%20%5Csum_%7Bj%3D1%7D%5EN%20%5Csum_%7Bk%20%5Cneq%20j%7D%5Cfrac%7Bq_jq_k%7D%7B4%5Cpi%20%5Cepsilon_0%20r_%7Bjk%7D%7D

Or we can write

U%3D%5Ciiint%20%5Cfrac12%5Crho%20%5Cphi%5C%2C%20%5Cmathrm%20d%20V

Where %5Cphi%20 is the electric potential, what we are going to introduce in chapter 2.

1.6 is an example of finding electrical energy in a crystal lattice, so I'll just skip this part.

1.7 Electric field

Suppose there are several charges q_1%2C%20q_2%2C...%2Cq_n, and  force on another charge q_0 is:

%5Cvec%20F%20%3D%20%5Csum%20_%20%7Bj%3D1%7D%5En%20%5Cfrac1%7B4%5Cpi%20%5Cepsilon_0%7D%20%5Cfrac%7Bq_0%20q_j%7D%7Br_%7B0j%7D%5E2%7D%20%5Chat%20r_%7B0j%7D

If we define an electric field strength vector:

%5Cvec%20E%3D%5Cfrac1%7B4%5Cpi%20%5Cepsilon_0%7D%5Csum%20_%20%7Bj%3D1%7D%5En%20%5Cfrac%7B%20q_j%7D%7Br_%7B0j%7D%5E2%7D%20%5Chat%20r_%7B0j%7D

The force on a charge is then

%5Cvec%20F%3Dq_0%5Cvec%20E

We can also consider continuous charge distribution of the source of the electric field,

%5Cvec%20E%3D%20%5Cfrac1%7B4%5Cpi%5Cepsilon_0%20%7D%5Ciiint%20%5Cfrac%7B%5Crho%20%5Chat%20r%7D%7Br%5E2%7D%5Cmathrm%20d%20V

Electric Field

1.8 shows an example of continuous charge distribution, I'll skip again.

1.9 Flux

This part introduces the definition of flux of a vector field, which will be useful:

%5CPhi%20%3D%20%5Ciint_S%20%5Cvec%20E%20%5Ccdot%20%5Cmathrm%20d%20%5Cvec%20S

is the flux through the surface S.

Flux

1.10 Gauss's law

The flux through a closed surface is proportional to total charge inside:

%5Ciint_S%20%5Cvec%20E%20%5Ccdot%20%5Cmathrm%20d%20%5Cvec%20S%3D%20%5Cfrac%20%7BQ_%7B%5Crm%20in%7D%7D%7B%5Cepsilon_0%7D

and we have its differential form:

%5Cnabla%20%5Ccdot%20%5Cvec%20E%3D%5Cfrac%20%5Crho%20%7B%5Cepsilon_0%7D

%5Cnabla is Hamilton's operator,

%5Cnabla%20%3D%20%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20x%7D%20%5Cvec%20i%2B%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20y%7D%20%5Cvec%20j%2B%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20z%7D%20%5Cvec%20k

To prove this law, we can first consider a single point charge q and a surface S. The electric field in the whole space is

%5Cvec%20E%20%3D%20%5Cfrac%20%7Bq%5Chat%20r%7D%7B4%5Cpi%20%5Cepsilon_0%20r%5E2%7D

And the flux through the surface is

%5CPhi%20%3D%20%5Ciint_S%20%5Cvec%20E%20%5Ccdot%20%5Cmathrm%20d%20%5Cvec%20S%20%3D%20%5Cfrac%7Bq%7D%7B4%5Cpi%20%5Cepsilon_0%7D%5Ciint_S%20%20%5Cmathrm%20d%20%5Cvec%20S%20%5Ccdot%20%5Cfrac%7B%5Chat%20r%7D%7Br%5E2%7D%3D%20%5Cfrac%7Bq%7D%7B4%5Cpi%20%5Cepsilon_0%7D%20%5Ciint_S%20%5Cmathrm%20d%20%5COmega

where %5COmega%20 is the total solid angle of surface S. Obviously,

%5COmega%20%3D%20%5Cleft%20%5C%7B%20%5Cbegin%7Barray%7D%7Bl%7D%0A4%5Cpi%2C%5C%3B%20q%5C%3B%20%5Crm%20inside%20%5C%3BS%5C%5C%0A0%2C%5C%3B%20q%5C%3B%20%5Crm%20outside%20%5C%3BS%0A%5Cend%7Barray%7D%20%5Cright.

prove gauss's law

so we have

%5CPhi%20%3D%20%5Cfrac%20q%7B%5Cepsilon_0%7D%5C%3B%20(q%20%5Crm%20%5C%3B%20inside%5C%3B%20S)

if there are many particles,

%5CPhi%20%3D%20%5Ciint_S%20%5Cvec%20E%20%5Ccdot%20%5Cmathrm%20d%20%5Cvec%20S%20%3D%20%5Ciint_S%20%5Csum%5Cvec%20E_i%20%5Ccdot%20%5Cmathrm%20d%20%5Cvec%20S%20%3D%20%5Csum%5Ciint_S%20%5Cvec%20E_i%20%5Ccdot%20%5Cmathrm%20d%20%5Cvec%20S%3D%5Csum_%7B%5Crm%20in%7D%5Cfrac%20%7Bq_i%7D%7B%5Cepsilon_0%7D%2B%20%5Csum_%7B%5Crm%20out%7D0

therefore, 

%5CPhi%20%3D%20%5Csum%20q_%7B%5Crm%20in%7D%2F%5Cepsilon_0

1.11~1.14 are examples using Gauss's law, skip again. Here we focus on theoretical points instead of details of calculation.

1.15 Energy associated with the electric field

Suppose we create a spherical shell with total charge q. According to our theory in 1.5, this shell requires energy U to assemble,

U%3D%20%5Cfrac%7Bq%5E2%7D%7B8%5Cpi%20%5Cepsilon_0%20r%7D

%5Cmathrm%20d%20U%20%3D%20-%20%5Cfrac%7Bq%5E2%7D%7B8%5Cpi%20%5Cepsilon_0%20r%5E2%7D%20%5Cmathrm%20d%20r

And electric field strength near the surface is

%20E%3D%20%5Cfrac%7Bq%7D%7B4%5Cpi%20%5Cepsilon_0%20r%5E2%7D

So we can discover that

%5Cmathrm%20d%20U%20%3D%20%5Cfrac12%20%5Cepsilon_0%20E%5E2%20%5Ccdot%204%5Cpi%20r%5E2%20%5Cmathrm%20d%20r

U%3D%20%5Ciiint%20%5Cfrac12%20%5Cepsilon_0%20E%5E2%20%5Cmathrm%20d%20V

where w%3D%20%5Cfrac12%20%5Cepsilon_0%20E%5E2 is called energy density. This is also true for a complicated electrostatic system with different charge distribution in space. The proof is mentioned in Feynman's lecture, and it's quite hard, I'll just skip the proof.

It seems like this energy is "stored" in the field. Our textbook discussed the meaning of this theory...I can't understand and rehearsal well, so let's just see the text:

Part of Text

References

[1] Edward M. Purcell, David J. Morin. Electricity and Magnetism (Third Edition)[M]. Cambridge Univercity Press.

[2] Richard Feynman. The Feynman Lectures on Physics(The New Millennium Edition, Volume II). 上海:上海科学技术出版社,2013.4.

//几乎是第一次写这样全英文的笔记

//真的太难了!朋友们支持一下吧

Electromagnetism||Electrostatics的评论 (共 条)

分享到微博请遵守国家法律