欢迎光临散文网 会员登陆 & 注册

【MIT 18.952 微分形式 (Differential Forms) 】习题(有伤)通关记录 01

2023-07-08 00:08 作者:Timm31415926  | 我要投稿

教材: MIT MATH18.952讲义 (https://math.mit.edu/classes/18.952/2018SP/files/18.952_book.pdf) 


数学界的多元宇宙联动O_O


第一章 Multilinear Algebra

1.1 Backgrounds 

章节1.1主要是复习一遍线性代数的基本知识

1.1 习题

Ex 1.1.i.

1.1.i Ans: Just do it be definition! 

Ex 1.1.ii.

1.1.ii Ans: Just check:  

%5Ctext%7Bi)%20It%20spans%3A%20%7D%5Cforall%20v%5Cin%20%5Cmathbb%7BR%7D%5En%2C%20v%3D%5Csum_%7Bi%7Dc_ie_i.

%5Ctext%7Bii)%20It%20is%20linearly%20independent%3A%20%7D%0A%5Csum_%7Bi%7Dc_ie_i%3D0%5Cimplies%20c_i%3D0%2C%20%5Cforall%20i.%20

Ex 1.1iii.

Ans: Just check: 

a) Bilinearly: B(v_1%2Bv_2%2C%20w)%3DB(v_1%2Cw)%2BB(v_2%2Cw)%2C%20%5Cforall%20v%2C%20w%5Cin%20%5Cmathbb%7BR%7D%5En.

b) Symmetry: B(v%2Cw)%3DB(w%2Cv)%2C%20%20%5Cforall%20v%2C%20w%5Cin%20%5Cmathbb%7BR%7D%5En. 

c) Postivity: B(v%2Cv)%5Cgeq%200%2C%20%5Cforall%20v%5Cin%20%5Cmathbb%7BR%7D%5En.%20(B(v%2Cv)%3D0%20%5Ciff%20v%3D0.)

These all follows from definition of addition and multiplication of real numbers. 


1.2 Quotient Spaces and Dual Spaces 

章节1.2里面的内容更深一点,但也属于线性代数的范畴。

1.2 习题

Ex 1.2.i.

1.2.i Ans: 

Ex 1.2.ii.

1.2.ii Ans: 

Ex 1.2.iii.

1.2.iii Ans: 

Ex 1.2.iv.

1.2.iv Ans: 

Commutative diagram giving definition of (AB)*.
Commutative diagram giving definition of A* and B*.
Ex 1.2.v.

1.2.v Ans:

Ex 1.2.vi

1.2.vi Ans: 

Ex 1.2.vii.

1.2.vii Ans: 

Ex 1.2.viii

1.2.viii Ans: 

Commutative aigram for A=B(pi).
Ex 1.2.ix.

1.2.ix Ans:

Commutative diagram for iota*(ev)=nu(pi).
Commutative diagram for Definition of iota*
Ex 1.2.x.

1.2.x Ans: 

Ex 1.2.xi.

1.2.xi Ans:

Ex 1.2.xii.
Ex 1.2.xii. continue

1.2.xii Ans:

其它资参考料:

1)微分形式入门课 (https://www.youtube.com/playlist?list=PL22w63XsKjqzQZtDZO_9s2HEMRJnaOTX7):这位教授所有的视频都很推荐,讲得非常通俗易懂。


2)教科书:John Hubbard_ Barbara Burke Hubbard - Vector Calculus, Linear Algebra, and Differential Forms_ A Unified Approach-Matrix Editions (2015)



【MIT 18.952 微分形式 (Differential Forms) 】习题(有伤)通关记录 01的评论 (共 条)

分享到微博请遵守国家法律