欢迎光临散文网 会员登陆 & 注册

平行线分三角形梯形的对角线交点在三角形中线

2023-02-22 06:25 作者:狮子朗道  | 我要投稿


也即,三角形作底边平行线与另外两边构成梯形。这个梯形的对角线交点在三角形中线上。

证明:

假设G不为BC中点,%5Cfrac%7BBG%7D%7BGC%7D%3D%5Cfrac%7B1%7D%7Bk%7D%5Cneq%7B1%7D.

我们有等高三角形的面积比S_%7B%5Cbigtriangleup%20ABG%7D%3AS_%7B%5Cbigtriangleup%20ACG%7D%3D1%3Ak%2C%5Cquad%20S_%7B%5Cbigtriangleup%20FBG%7D%3AS_%7B%5Cbigtriangleup%20FCG%7D%3D1%3Ak.

%5Cbigtriangleup%7BABG%7D%5Cbacksim%5Cbigtriangleup%7BADH%7D%5Cbigtriangleup%7BACG%7D%5Cbacksim%5Cbigtriangleup%7BAEH%7D.

我们有

DH%3D%5Cfrac%7BAH%7D%7BAG%7DBG%2C%5Cquad%7B%7DEH%3D%5Cfrac%7BAH%7D%7BAG%7DCG%5Cquad%7B%7D%2C%0A

DH%3AEH%3D1%3Ak.

故而类似的等高三角形面积比,

S_%7B%5Cbigtriangleup%20ADH%7D%3AS_%7B%5Cbigtriangleup%20AEH%7D%3D1%3Ak%2C%5Cquad%20S_%7B%5Cbigtriangleup%20FDH%7D%3AS_%7B%5Cbigtriangleup%20FEH%7D%3D1%3Ak.%0A

故而

%0A%5Cfrac%7BS_%7B%5Cbigtriangleup%20DBF%7D%7D%7BS_%7B%5Cbigtriangleup%20ECF%7D%7D%3D%5Cfrac%7BS_%7B%5Cbigtriangleup%20ABG%7D-S_%7B%5Cbigtriangleup%20ADH%7D-S_%7B%5Cbigtriangleup%20FDH%7D-S_%7B%5Cbigtriangleup%20FBG%7D%7D%7BS_%7B%5Cbigtriangleup%20ACG%7D-S_%7B%5Cbigtriangleup%20AEH%7D-S_%7B%5Cbigtriangleup%20FEH%7D-S_%7B%5Cbigtriangleup%20FCG%7D%7D%3D%5Cfrac%7B1%7D%7Bk%7D%5Cneq%201%20%5Ctag%7B1%7D

而我们知道,梯形对角线分左右两个小三角形面积应该是相等的. 详细如下(证明).

对等底等高的三角形有

%5Cbegin%7Balign*%7D%0A%0AS_%7B%5Cbigtriangleup%20DBC%7D%26%3DS_%7B%5Cbigtriangleup%20ECB%7D%20%5C%5C%0A%0AS_%7B%5Cbigtriangleup%20DBC%7D-S_%7B%5Cbigtriangleup%20FBC%7D%26%3DS_%7B%5Cbigtriangleup%20ECB%7D-S_%7B%5Cbigtriangleup%20FCB%7D%20%5C%5C%0A%0A%7BS_%7B%5Cbigtriangleup%20DBF%7D%7D%26%3D%7BS_%7B%5Cbigtriangleup%20ECF%7D%7D%20%5Ctag%7B2%7D%0A%0A%5Cend%7Balign*%7D

(1)与(2)冲突,故而假设不成立. 我们得到G为BC中点■

证毕.


平行线分三角形梯形的对角线交点在三角形中线的评论 (共 条)

分享到微博请遵守国家法律