欢迎光临散文网 会员登陆 & 注册

EI级 | Matlab实现TCN-LSTM-Multihead-Attention多头注意力机制多变量时间序列预测

2023-12-02 21:59 作者:Matlab工程师  | 我要投稿

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

在时间序列预测领域,TCN-LSTM-Multihead-Attention模型正变得越来越流行。这个模型结合了三种不同的神经网络架构,分别是TCN(Temporal Convolutional Network)、LSTM(Long Short-Term Memory)和多头注意力机制(Multihead Attention)。这种结合使得模型能够更好地捕捉时间序列数据中的复杂关系,从而提高预测的准确性和稳定性。

首先,让我们来看一下TCN。TCN是一种基于卷积神经网络的模型,它能够有效地捕捉时间序列数据中的局部模式和长期依赖关系。相比于传统的RNN(循环神经网络)和LSTM,TCN具有更短的训练时间和更好的并行性,同时也能够更好地处理长期依赖关系。

接下来是LSTM,它是一种专门用于处理时间序列数据的循环神经网络。LSTM通过自己的记忆单元和门控机制,能够更好地捕捉时间序列数据中的长期依赖关系,从而提高预测的准确性。

最后是多头注意力机制,这是一种用于处理序列数据的注意力机制的变种。它能够同时关注序列数据中的多个部分,从而更好地捕捉序列数据中的重要信息。结合多头注意力机制的TCN-LSTM模型能够更全面地捕捉时间序列数据中的复杂关系,从而提高预测的准确性和稳定性。

综合以上三种神经网络架构,TCN-LSTM-Multihead-Attention模型在多变量时间序列预测任务中表现出了很好的性能。它能够更好地捕捉时间序列数据中的长期依赖关系和复杂关系,从而提高预测的准确性和稳定性。因此,这个模型在金融、气象、交通等领域的时间序列预测任务中具有很大的应用前景。

总的来说,TCN-LSTM-Multihead-Attention模型是一种非常有效的多变量时间序列预测模型。它结合了三种不同的神经网络架构,能够更全面地捕捉时间序列数据中的复杂关系,从而提高预测的准确性

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test  = mapminmax('apply', P_test, ps_input);t_train = ind2vec(T_train);t_test  = ind2vec(T_test );

⛳️ 运行结果

🔗 参考文献

本程序参考以下中文EI期刊,程序注释清晰,干货满满。

[1] 胡艳霞,王成,李弼程,et al.基于多头注意力机制Tree-LSTM的句子语义相似度计算[J].中文信息学报, 2020, 34(3):11.DOI:CNKI:SUN:MESS.0.2020-03-004.

[2] 王军,高梓勋,单春意.基于TCN-Attention模型的多变量黄河径流量预测[J].人民黄河, 2022, 44(11):6.

🎈 部分理论引用网络文献,若有侵权联系博主删除

🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合



EI级 | Matlab实现TCN-LSTM-Multihead-Attention多头注意力机制多变量时间序列预测的评论 (共 条)

分享到微博请遵守国家法律