深度学习目标检测论文科研小班第五期
目标检测(Object Detection)任务是计算机视觉中非常重要的基础问题,也是解决图像分割、目标跟踪、图像描述等问题的基础。目标检测是检测输入图像是否存在给定类别的物体,如果存在,输出物体在图像中的位置信息(矩形框的坐标值表示,Xmin、Ymin、Xmax、Ymax)。
早期,传统目标检测算法还没有使用深度学习,一般分为三个阶段:区域选取、特征提取、特征分类。
区域选取:采用滑动窗口(Sliding Windows)算法,选取图像中可能出现物体的位置,这种算法会存在大量冗余框,并且计算复杂度高。
特征提取:通过手工设计的特征提取器(如SIFT和HOG等)进行特征提取。