欢迎光临散文网 会员登陆 & 注册

逻辑回归算法难吗?听老师怎么说!

2021-02-26 14:11 作者:自学Python的小姐姐呀  | 我要投稿

1. 什么是逻辑回归

首先学习课程之前我们必须要知道的逻辑回归的一些概念。

逻辑回归是什么呢?逻辑回归就是这样的一个过程:面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型的好坏。

Logistic回归虽然名字里带“回归”,但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别)

回归模型中,y是一个定性变量,比如y=0或1,logistic方法主要应用于研究某些事件发生的概率。


在本节中,我们介绍逻辑回归中的Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签  可以取两个以上的值。 Softmax回归模型对于诸如MNIST手写数字分类等问题是很有用的,该问题的目的是辨识10个不同的单个数字。Softmax回归是有监督的,不过后面也会介绍它与深度学习/无监督学习方法的结合。


优点:

1)预测结果是界于0和1之间的概率;

2)可以适用于连续性和类别性自变量;

3)容易使用和解释;

 

缺点:

1)对模型中自变量多重共线性较为敏感,例如两个高度相关自变量同时放入模型,可能导致较弱的一个自变量回归符号不符合预期,符号被扭转。需要利用因子分析或者变量聚类分析等手段来选择代表性的自变量,以减少候选变量之间的相关性;

2)预测结果呈“S”型,因此从log(odds)向概率转化的过程是非线性的,在两端随着log(odds)值的变化,概率变化很小,边际值太小,slope太小,而中间概率的变化很大,很敏感。 导致很多区间的变量变化对目标概率的影响没有区分度,无法确定阀值。


 

3.逻辑回归和多重线性回归的区别

Logistic回归与多重线性回归实际上有很多相同之处,最大的区别就在于它们的因变量不同,其他的基本都差不多。正是因为如此,这两种回归可以归于同一个家族,即广义线性模型(generalizedlinear model)。
这一家族中的模型形式基本上都差不多,不同的就是因变量不同。这一家族中的模型形式基本上都差不多,不同的就是因变量不同。

· 如果是连续的,就是多重线性回归

· 如果是二项分布,就是Logistic回归

· 如果是Poisson分布,就是Poisson回归

· 如果是负二项分布,就是负二项回归




例如

首先我们先来看一个函数,这个函数叫做Sigmoid函数:

 


函数中t无论取什么值,其结果都在[0,-1]的区间内,回想一下,一个分类问题就有两种答案,一种是“是”,一种是“否”,那0对应着“否”,1对应着“是”,

那又有人问了,你这不是[0,1]的区间吗,怎么会只有0和1呢?

这个问题问得好,我们假设分类的阈值是0.5,那么超过0.5的归为1分类,低于0.5的归为0分类,阈值是可以自己设定的。

好了,接下来我们把aX+b带入t中就得到了我们的逻辑回归的一般模型方程:

 


结果P也可以理解为概率,换句话说概率大于0.5的属于1分类,概率小于0.5的属于0分类,这就达到了分类的目的。


1.2损失函数

逻辑回归的损失函数跟其它的不同,先一睹尊容:

 


解释一下,当真实值为1分类时,用第一个方程来表示损失函数;当真实值为0分类时,用第二个方程来表示损失函数,为什么要加上log函数呢?可以试想一下,当真实样本为1是,但h=0概率,那么log0=∞,这就对模型最大的惩罚力度;当h=1时,那么log1=0,相当于没有惩罚,也就是没有损失,达到最优结果。所以数学家就想出了用log函数来表示损失函数,把上述两式合并起来就是如下函数,并加上正则化项:

 


最后按照梯度下降法一样,求解极小值点,得到想要的模型效果。



看完这篇文章有没有恍然大悟呢?其实学习没有想象的那么难,想要了解更多精彩内容可以转发点赞哦~


作者:尚学堂官方

https://www.bilibili.com/read/cv10005347

出处: bilibili


逻辑回归算法难吗?听老师怎么说!的评论 (共 条)

分享到微博请遵守国家法律