欢迎光临散文网 会员登陆 & 注册

利用函数思想求体积的取值范围(2022新高考Ⅰ,8)

2023-04-14 14:39 作者:数学老顽童  | 我要投稿

(2022新高考Ⅰ,8)已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球体的体积为36%5Cmathrm%7B%5Cpi%7D,且3%5Cleqslant%20l%5Cleqslant%203%5Csqrt%7B3%7D,则该四棱锥体积的取值范围是(    )

A.%5Cleft%5B%2018%2C%5Cfrac%7B81%7D%7B4%7D%20%5Cright%5D%20

B.%5Cleft%5B%20%5Cfrac%7B27%7D%7B4%7D%2C%5Cfrac%7B81%7D%7B4%7D%20%5Cright%5D%20

C.%5Cleft%5B%20%5Cfrac%7B27%7D%7B4%7D%2C%5Cfrac%7B64%7D%7B3%7D%20%5Cright%5D%20

D.%5Cleft%5B%2018%2C27%20%5Cright%5D%20

解:设球O的半径为R

%5Cfrac%7B4%7D%7B3%7D%5Cmathrm%7B%5Cpi%7DR%5E3%3D36%5Cmathrm%7B%5Cpi%7D,解得%5Ccolor%7Bred%7D%7BR%3D3%7D.

如图,设正四棱锥为P-ABCD,其高为PH%3Dh.

设直线PH与球面的另一交点为E,连接AEHE.

易知%5Cbigtriangleup%20PHA%5Ctext%7B%E2%88%BD%7D%5Cbigtriangleup%20PAE

所以%5Cfrac%7BPH%7D%7BPA%7D%3D%5Cfrac%7BPA%7D%7BPE%7D,即%5Cfrac%7Bh%7D%7Bl%7D%3D%5Cfrac%7Bl%7D%7B6%7D,即%5Ccolor%7Bred%7D%7Bh%3D%5Cfrac%7Bl%5E2%7D%7B6%7D%7D

所以

%5Cbegin%7Baligned%7D%0A%09V_%7BP-ABCD%7D%26%3D%5Cfrac%7B1%7D%7B3%7D%5Ccdot%20h%5Ccdot%20S_%7B%5Ctext%7B%E6%AD%A3%E6%96%B9%E5%BD%A2%7DABCD%7D%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B3%7D%5Ccdot%20h%5Ccdot%20%5Cleft(%202%5Cleft%7C%20HA%20%5Cright%7C%20%5Cright)%20%5E2%5Ccdot%20%5Cfrac%7B1%7D%7B2%7D%5C%5C%0A%09%26%3D%5Cfrac%7B2%7D%7B3%7D%5Ccdot%20h%5Ccdot%20%5Cleft%7C%20HA%20%5Cright%7C%5E2%5C%5C%0A%09%26%3D%5Cfrac%7B2%7D%7B3%7D%5Ccdot%20h%5Ccdot%20%5Cleft(%20l%5E2-h%5E2%20%5Cright)%5C%5C%0A%09%26%3D%5Cfrac%7B2%7D%7B3%7D%5Ccdot%20%5Cfrac%7Bl%5E2%7D%7B6%7D%5Ccdot%20%5Cleft%5B%20l%5E2-%5Cleft(%20%5Cfrac%7Bl%5E2%7D%7B6%7D%20%5Cright)%20%5E2%20%5Cright%5D%5C%5C%0A%09%26%3D%5Ccolor%7Bred%7D%7B%5Cfrac%7Bl%5E4%5Cleft(%2036-l%5E2%20%5Cright)%7D%7B324%7D%7D%5C%5C%0A%5Cend%7Baligned%7D

V%3Df%5Cleft(%20l%20%5Cright)%20%3D%5Cfrac%7Bl%5E4%5Cleft(%2036-l%5E2%20%5Cright)%7D%7B324%7D

其中l%5Cin%20%5Cleft%5B%203%2C3%5Csqrt%7B3%7D%20%5Cright%5D%20.则

%5Cbegin%7Baligned%7D%0A%09f'%5Cleft(%20l%20%5Cright)%20%26%3D%5Cfrac%7B4l%5E3%5Ccdot%20%5Cleft(%2036-l%5E2%20%5Cright)%20%2Bl%5E4%5Ccdot%20%5Cleft(%20-2l%20%5Cright)%7D%7B324%7D%5C%5C%0A%09%26%3D%5Cfrac%7Bl%5E3%5Cleft(%202%5Csqrt%7B6%7D%2Bl%20%5Cright)%20%5Cleft(%20%5Ccolor%7Bred%7D%7B2%5Csqrt%7B6%7D-l%7D%20%5Cright)%7D%7B54%7D%5C%5C%0A%5Cend%7Baligned%7D

f%E2%80%99%5Cleft(%20l%20%5Cright)%20%3D0,解得l%3D2%5Csqrt%7B6%7D

l%5Cin%20%5Ccolor%7Bred%7D%7B%5Cleft%5B%203%2C2%5Csqrt%7B6%7D%20%5Cright)%20%7Df'%5Cleft(%20l%20%5Cright)%20%3E0f%5Cleft(%20l%20%5Cright)%20%5Ccolor%7Bred%7D%7B%5Cnearrow%20%7D

l%5Cin%20%5Ccolor%7Bred%7D%7B%5Cleft(%202%5Csqrt%7B6%7D%2C3%5Csqrt%7B3%7D%20%5Cright%5D%20%7Df%E2%80%99%5Cleft(%20l%20%5Cright)%20%3C0f%5Cleft(%20l%20%5Cright)%20%5Ccolor%7Bred%7D%7B%5Csearrow%20%7D

f%5Cleft(%20l%20%5Cright)%20_%7B%5Cmax%7D%3Df%5Cleft(%202%5Csqrt%7B6%7D%20%5Cright)%20%3D%5Cfrac%7B64%7D%7B3%7D

又因f%5Cleft(%203%20%5Cright)%20%3D%5Cfrac%7B27%7D%7B4%7Df%5Cleft(%203%5Csqrt%7B3%7D%20%5Cright)%20%3D%5Cfrac%7B81%7D%7B4%7D

f%5Cleft(%20l%20%5Cright)%20_%7B%5Cmin%7D%3D%5Cfrac%7B27%7D%7B4%7D.

综上所述:V%5Cin%20%5Ccolor%7Bred%7D%7B%5Cleft%5B%20%5Cfrac%7B27%7D%7B4%7D%2C%5Cfrac%7B64%7D%7B3%7D%20%5Cright%5D%20%7D,选C.

利用函数思想求体积的取值范围(2022新高考Ⅰ,8)的评论 (共 条)

分享到微博请遵守国家法律