每日航空事故及事故征候(事件)简报(50) 2023.2.19

本系列希望为各位带来最详细的每日航空事故及事故征候(事件)信息(本系列信息全部来源于ASN数据库, 由于数据库更新时间等原因之限制每日简报将报告前一日之内容)、
ASN数据库会有信息延迟, 部分事故或事故征候(事件)无法及时(在发生后第二天)出现在简报中, 现决定第一天晚上发布当天的简报, 第二天修改前一天的简报.在发生第二天之后更新至ASN的事故我将不会再次添加至专栏
简报不包括军航事故, ASN资料库简报内会写出事故航班之 "nature", 如此项为"Military"(军事)则该事故不会出现在本简报中
"历史上的今天"部分是当天内容, 选取的事故与ASN主页相同部分一样
事故/事故征候调查报告部分每周更新一次

至文章发出时, ASN已记录2022年事故/事故征候418起
ASN资料库记录2023年2月18日发生之事故/事故征候3起, 具体信息如下:

1: ASN事故号:308444
事故时间:
机型:Cessna T337H Turbo Super
航空器运行及拥有者:Skymaster
航班号:
注册号:LV-ZZN
制造商序列号:33701875
生产地:
首飞日期:
试飞注册号:
机龄:
机队编号:
引擎:
构型:
总人数:
死亡人数:0
非机上人员死亡人数:0
航空器损坏情况: 严重损坏
事故分类: 事故征候
事故地点:蒙得维的亚-天使·S·阿达米机场(SUAA),乌拉圭东岸共和国
事故发生的飞行阶段: 降落
飞行性质:
起飞机场:
目的地机场:蒙得维的亚-天使·S·阿达米机场(SUAA),乌拉圭东岸共和国
具体信息:
进行紧急机头起落架收上着陆时滑出跑道

2: ASN事故号:308448
事故时间:
机型:
航空器运行及拥有者:
航班号:
注册号:
制造商序列号:
生产地:
首飞日期:
试飞注册号:
机龄:
机队编号:
引擎:
构型:
总人数: 1
死亡人数:0
非机上人员死亡人数:0
航空器损坏情况: 严重损坏
事故分类: 事故
事故地点:靠近布克汉农,美利坚合众国
事故发生的飞行阶段:
飞行性质:
起飞机场:
目的地机场:
具体信息:

3: ASN事故号:308429
事故时间:0646
机型:Cessna 340A
航空器运行及拥有者:私人
航班号:
注册号:RP-C2080
制造商序列号:340A-0917
生产地:
首飞日期:
试飞注册号:
机龄:
机队编号:
引擎:
构型:
总人数: 4
死亡人数:
非机上人员死亡人数:0
航空器损坏情况: 航空器失联
事故分类: 事故征候
事故地点:菲律宾共和国
事故发生的飞行阶段: 巡航
飞行性质: 客运
起飞机场: 莱加兹皮比科尔国际机场(LGP/RPLK), 菲律宾共和国
目的地机场:马尼拉尼诺伊·阿基诺国际机场(MNL/RPLL),菲律宾共和国
具体信息:
搜索行动已展开

历史上的今天
1984年2月19日,西班牙航空610号班机,一架Boeing 727-256型客机在巡航时撞山(CFIT-M),机上148人全部罹难无人生还,西班牙CIA(全称不确定)认定事故发生的可能肇因为:“他们对高度警报系统自动捕获的信心、对其警告的误解,以及可能对高度表的误读,使得机组人员在安全高度以下飞行,撞上电视天线的基座,从而失去左翼,在无法控制飞机的情况下坠落至地面。”(Their confidence on the automatic capture performed by the Altitude Alert system, the misinterpretation of its warnings, as well as a probable misreading of the altimeter made the crew to fly below the safety altitude, colliding into the television antennas' base, thus losing the left wing, falling to the ground with no possible control of the aircraft.)

航空事故/事故征候调查报告更新
法国民用航空安全调查及分析局(BEA, Bureau d'Enquêtes et d'Analyses pour la sécurité de l'aviation civile)发布了发生于2021年2月8日的力士翼航空301号班机的事故最终调查报告,认定事故发生的可能肇因为:“在开始下降至目的地之前,机组人员听取了Le Bourget机场ATIS的报告,该报告显示在3000至5000英尺之间存在严重结冰
因此,机组人员选择的进近速度(Vref 97 kt)比结冰条件下的进近转速低22 kt,根据制造商的说法,接近冰污染情况下的失速转速。
在3000英尺处,机组人员启动机翼和稳定器除冰系统21秒,这相当于一个完整的除冰循环。机组人员表示,他们通过驾驶舱窗户观察到机翼前缘积冰已经破裂。然后,他们停用了除冰系统,不再启用。这一决定完全基于对机翼前缘的目视观察。
事故发生后观察到机翼和稳定器前缘结冰,这表明飞机在最后时刻结冰。因此,可以做出以下假设:
•光线和云层不允许机组人员确定机翼的实际污染程度。
•或者从驾驶舱可以看到积冰的形状和厚度,在这种情况下:
在停用除冰系统后,机组人员不再主动监测前缘以确保不形成冰,
机组们观察到了冰层的堆积,但低估了其后果。
在当天的条件下,飞机的重量和机组人员选择的配置,如果遵守制造商在结冰条件下进近的程序,这意味着飞机将无法在勒布尔热机场着陆。这是因为首先,在一台发动机不工作的复飞情况下,飞机的爬升率不足以安全地飞越障碍物。其次,可用的着陆距离小于飞机所需的着陆距离。机组人员告诉BEA,他们甚至在起飞前就意识到了这些限制,他们知道如果在着陆前必须持续启动除冰系统,他们就必须备降。
鉴于严格遵守程序不可能满足操作限制,机组人员选择的策略是根据制造商的程序在非结冰条件下进近和着陆,同时确保飞机上没有结冰。机长解释说,这是对程序的标准调整。
除冰系统的停用产生以下后果:
•水平稳定器前缘可能积存的冰可能尚未完全破碎。
•进近结束时,飞机上再次结冰。
•失速警告保护系统(SWPS)未配置为在事故结冰条件下有效切入:PFD上显示的速度带未配置为警告机组人员他们以接近失速速度的速度飞行,声音失速警告和失速震杆保护未配置为以适当的攻角启动。
就在撞击发生之前,飞机正以低速和高攻角飞行,如果飞机结构受到冰污染,飞机可能会失速。记录的飞行数据无法确定确切的污染程度,但在事故发生后观察到的机翼前缘和水平安定面结冰情况证实,飞机上已经结冰。”(Before starting the descent to destination, the crew listened to the Le Bourget airport ATIS which indicated the presence of severe icing between 3,000 and 5,000 ft. They carried out the approach applying the manufacturer’s normal procedure for an approach in non-icing conditions, the
approach speed selected by the crew (Vref 97 kt) was thus 22 kt below the approach speed in icing conditions and was, according to the manufacturer, close to the stall speed in the event of ice contamination.
At 3,000 ft, the crew activated the wing and stabilizer de-ice system for a period of 21 s which corresponded to a complete de-ice cycle. The crew indicated that they observed through the cockpit window that the ice which had built up on wing leading edges had broken up. They then deactivated the de-ice system and did not active it again. This decision was solely based on the visual observation of the wing leading edges.
The presence of ice on the wing and stabilizer leading edges observed after the accident shows that ice built up on the aeroplane on final. The following hypotheses can thus be made:
• Either the light and clouds did not allow the crew to determine the actual degree of contamination of the wings.
• Or the shapes and thickness of this built-up ice were visible from the cockpit and in this case:
after deactivating the de-ice system, the crew no longer actively monitored the leading edges to ensure that there was no formation of ice or,
the crew observed this build-up of ice but underestimated the consequences of this.
In the conditions of the day, the aeroplane’s weight and the configuration selected by the crew, compliance with the manufacturer’s procedure for an approach in icing conditions would have meant that the aeroplane would not be able to land at Le Bourget airport. This was because firstly, in the event of a go-around with one engine inoperative, the aeroplane’s climb rate was not sufficient to safely clear obstacles. Secondly, the landing distance available was less than the landing distance required by the aeroplane. The crew told the BEA that they were aware of these limitations even before taking off and that they knew that if they had to continuously activate the de-ice system until landing, they would have to divert.
Given that it was impossible to meet the operational constraints by strictly complying with the procedure, the strategy chosen by the crew was to carry out the landing according to the manufacturer's procedures for an approach and landing in non-icing conditions while ensuring that ice had not built up on the aeroplane. The captain explained that this was a standard adaptation of the procedure.
The deactivation of the de-ice system had the following consequences:
• The ice that may have built up on the leading edge of the horizontal stabilizer may not have been completely broken up.
• Ice built up again on the aeroplane at the end of the approach.
• The Stall Warning Protection System (SWPS) was not configured to cut in effectively in the icing conditions of the accident: the speed tape displayed on the PFD was not configured to alert the crew that they were flying at a speed close to the stall speed and the aural stall warning and the Stick Pusher protection were not configured to activate at the appropriate angles of attack.
Just before the impact, the aeroplane was flying in low speed and high angle-of-attack envelopes where the aircraft was likely to stall in case of ice contamination of its structure. The recorded flight data did not enable the exact degree of contamination to be determined, but the presence of ice on the leading edges of the wings and horizontal stabilizer observed after the accident confirmed that ice had built up on the aeroplane.)

南非民用航空总局发布了发生于2022年1月3日的南非空连航空ZS-NRJ机的事故最终调查报告,认定事故发生的可能肇因为:“鸟击中螺旋桨导致桨叶过载断裂和分离失效。”(A bird strike on the propeller blade caused the overload fracture and separation failure of the blade.)

南非民用航空总局发布了发生于2022年9月20日的佩普科尔集团ZS-PKR机的事故最终调查报告,认定事故发生的可能肇因为:“在起飞滑跑过程中,2号发动机在一只鸟飞入发动机后受到严重损坏,推力迅速降至零;机组人员进行了一次成功的RTO(终止起飞)。”(During the take-off roll, the No.2 engine spooled down to zero after suffering substantial damage after a bird flew into the engine; the crew conducted a successful RTO.)

尼泊尔文化、旅游和民航部航空事故调查委员会发布了发生于2023年1月15日的雪人航空691号班机的事故调查初期报告,其中提到调查范围将集中于:“两个螺旋桨都进入顺桨状态的情况
人为因素
进入博卡拉国际机场的目视进场程序,包括国内和国际机场的同时运行。”(2.1 The investigation will focus on:
The Circumstances under which both propellers went into the feathered condition
Human Factors
Visual approach procedures into Pokhara International Airport including simultaneous operation of both national and international airports.)