欢迎光临散文网 会员登陆 & 注册

数学物理方法公式(13):Hermite Polynomial

2023-03-23 11:47 作者:打电动的阿伟嘻嘻嘻  | 我要投稿

给出Hermite Polynomial的级数展开

H_n(%5Cxi)%3D%5Csum%5E%7B%5B%5Cfrac%7Bn%7D%7B2%7D%5D%7D_%7Bm%3D0%7D(-1)%5Em%5Cfrac%7Bn!%7D%7Bm!(n-2m)!%7D(2%5Cxi)%5E%7Bn-2m%7D.

前几项为

H_0(x)%3D1%2C%5C%20H_1(x)%3D2x%2C%5C%20H_2(x)%3D4x%5E2-2%2C

H_3(x)%3D8x%5E3-12x%2C%5C%20H_4(x)%3D16x%5E4-48x%5E2%2B12%2C%5C%20H_5(x)%3D32x%5E5-160x%5E3%2B120x.

Hermite Polynomial的性质:

(1):%5Cfrac%7BdH_n(x)%7D%7Bdx%7D%3D2nH_%7Bn-1%7D(x)%2C%5C%20%5Cfrac%7Bd%5EnH_n%7D%7Bdx%5En%7D%3D2%5Enn!.

(2):H_n(%5Cxi)%3D(-1)%5Ene%5E%7B%5Cxi%5E2%7D%5Cfrac%7Bd%5En%7D%7Bd%5Cxi%5En%7D(e%5E%7B-%5Cxi%5E2%7D).

(3):e%5E%7B2xr-r%5E2%7D%3D%5Csum%5E%7B%5Cinfty%7D_%7Bn%3D0%7DH_n(x)%5Cfrac%7Br%5En%7D%7Bn!%7D.

(4):%5Cint%5E%7B%5Cinfty%7D_%7B-%5Cinfty%7DH_m(%5Cxi)H_n(%5Cxi)e%5E%7B-%5Cxi%5E2%7Dd%5Cxi%3D2%5Enn!%5Csqrt%7B%5Cpi%7D%5Cdelta_%7Bmn%7D.

数学物理方法公式(13):Hermite Polynomial的评论 (共 条)

分享到微博请遵守国家法律