欢迎光临散文网 会员登陆 & 注册

用多边形滚动逼近计算摆线长(绕远路系列)

2023-06-16 17:52 作者:现代微积分  | 我要投稿

此探索源于一道初中题:

如图:

边长为2的正方形置于地面,将正方形向前滚动一周,求点A运动的轨迹总长度?

这道题本不难,先定性分析,则A先以O_1为圆心,2为半径转过90°;

再以O_2为圆心,2%5Csqrt%7B2%7D为半径转过90°;

然后以O_3为圆心,2为半径转过90°;

最后还要再滚一个90°正方形才算滚完一周,只不过最后一次A点的位置没有变;

综上,总长度为l%3D%5Cfrac%7B90%5E%5Ccirc%20%7D%7B360%5E%5Ccirc%20%7D%20%5Ctimes%202%5Cpi%20%5Ctimes%202%2B%5Cfrac%7B90%5E%5Ccirc%20%7D%7B360%5E%5Ccirc%20%7D%20%5Ctimes%202%5Csqrt%7B2%7D%20%5Cpi%20%5Ctimes%202%2B%5Cfrac%7B90%5E%5Ccirc%20%7D%7B360%5E%5Ccirc%20%7D%20%5Ctimes%202%5Cpi%20%5Ctimes%202

%3D(2%2B%5Csqrt%7B2%7D%20)%5Cpi%20

等等...这个轨迹怎么跟那啥有些像?

嗯,于是联想到摆线

可是摆线那是圆上的一点呀?这可咋整捏?

于是我灵光一现!利用多边形逼近可以试试!

考虑一个外接圆半径为r的正n边形,考虑其中一顶点A在滚动一周时转过的总弧长

以正6边形为例子

在滚动过程中,容易发现:

(1)对于每段圆弧,圆心均是此时位于底边右端的那个点,每次滚过的角均为多边形的外角%5Ctheta%5Ctheta%3D%5Cfrac%7B2%5Cpi%20%7D%7Bn%7D%20

因此L%3D%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20r_i%5Ctheta%20%3D%5Cfrac%7B2%5Cpi%20%7D%7Bn%7D%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20r_i

(2)以正n边形轮廓为参考,滚完一周,A恰好相当于沿着正n边形各个顶点"跳"了一轮

因此,半径就等于从一个点出发向各个顶点引出的线段之和


考虑在平面直角坐标系中构造圆x%5E2%2By%5E2%3Dr%5E2,圆周上均匀分布着点:

(r%5Ccos(%5Cfrac%7B2%5Cpi%20%7D%7Bn%7Di)%20%2Cr%5Csin%20(%5Cfrac%7B2%5Cpi%20%7D%7Bn%7Di))

选其中一点(r%2C0)向各个顶点引出线段,则其各段表达式为:

%5Cbegin%7Balign*%7D%0Ar_i%20%20%26%20%3D%5Csqrt%7B%5Br%5Ccos(%5Cfrac%7B2%5Cpi%20%7D%7Bn%7Di)-r%5D%5E2%2B%5Br%5Csin%20(%5Cfrac%7B2%5Cpi%20%7D%7Bn%7Di)%5D%5E2%7D%20%5C%5C%0A%20%20%26%20%3Dr%5Csqrt%7B%5Ccos%5E2(%5Cfrac%7B2%5Cpi%20%7D%7Bn%7Di)-2%5Ccos(%5Cfrac%7B2%5Cpi%20%7D%7Bn%7Di)%2B1%2B%5Csin%5E2%20(%5Cfrac%7B2%5Cpi%20%7D%7Bn%7Di)%7D%20%5C%5C%0A%20%20%26%20%3Dr%5Csqrt%7B2-2%5Ccos(%5Cfrac%7B2%5Cpi%20%7D%7Bn%7Di)%7D%20%5C%5C%0A%20%20%26%20%3Dr%5Csqrt%7B4%5Csin%20%5E2(%5Cfrac%7B%5Cpi%20%7D%7Bn%7Di)%7D%20%5C%5C%0A%20%20%26%20%3D2r%5Csin(%5Cfrac%7B%5Cpi%20%7D%7Bn%7Di)%20%20%5C%5C%0A%5Cend%7Balign*%7D

ps:由于i=1,2,...,n,则sin(%5Cfrac%7B%5Cpi%20%7D%7Bn%7Di)%5Cgeqslant%200,故最后一步可脱去绝对值

于是L%3D%5Cfrac%7B2%5Cpi%20%7D%7Bn%7D%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5B2r%5Csin(%5Cfrac%7B%5Cpi%20%7D%7Bn%7Di)%5D%3D%5Cfrac%7B4%5Cpi%20r%7D%7Bn%7D%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Csin(%5Cfrac%7B%5Cpi%20%7D%7Bn%7Di)

我们需要求出后面那个数列的前n项和,考虑将其裂项

啥?三角数列也能裂项?

是的,我们由和差化积公式:

%7B%5Clarge%20%5Ccos%20x-%5Ccos%20y%3D-2%5Csin%20%5Cfrac%7Bx%2By%7D%7B2%7D%5Csin%20%20%5Cfrac%7Bx-y%7D%7B2%7D%7D%20

于是

%5Cbegin%7Balign*%7D%0A%20%20%26%20%5Ccos%20%5Bk(i%2B1)%2Bb%5D-%5Ccos%20(ki%2Bb)%5C%5C%0A%20%20%26%20%3D-2%5Csin%20(ki%2B%5Cfrac%7Bk%7D%7B2%7D%20%2Bb)%5Csin%20%5Cfrac%7Bk%7D%7B2%7D%20%5C%5C%0A%5Cend%7Balign*%7D

%5Csin%20(ki%2B%5Cfrac%7Bk%7D%7B2%7D%20%2Bb)%3D-%5Cfrac%7B1%7D%7B2%5Csin%20%5Cfrac%7Bk%7D%7B2%7D%7D%20%5B%5Ccos%20%5Bk(i%2B1)%2Bb%5D-%5Ccos%20(ki%2Bb)%5D

与原式待定系数,有:%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0Ak%3D%5Cfrac%7B%5Cpi%20%7D%7Bn%7D%20%20%5C%5C%0A%5Cfrac%7Bk%7D%7B2%7D%2Bb%3D0%20%0A%5Cend%7Bmatrix%7D%5Cright.%0A%5CRightarrow%20%0A%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%0Ak%3D%5Cfrac%7B%5Cpi%20%7D%7Bn%7D%20%20%5C%5C%0Ab%3D-%5Cfrac%7B%5Cpi%20%7D%7B2n%7D%0A%5Cend%7Bmatrix%7D%5Cright.


%5Csin(%5Cfrac%7B%5Cpi%20%7D%7Bn%7Di)%3D-%5Cfrac%7B1%7D%7B2%5Csin%20%5Cfrac%7B%5Cpi%20%7D%7B2n%7D%7D%20%5B%5Ccos%20%5B%5Cfrac%7B%5Cpi%20%7D%7Bn%7D(i%2B1)-%5Cfrac%7B%5Cpi%20%7D%7B2n%7D%5D-%5Ccos%20(%5Cfrac%7B%5Cpi%20%7D%7Bn%7Di-%5Cfrac%7B%5Cpi%20%7D%7B2n%7D)%5D

求和得:

%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Csin(%5Cfrac%7B%5Cpi%20%7D%7Bn%7Di)%3D-%5Cfrac%7B1%7D%7B2%5Csin%20%5Cfrac%7B%5Cpi%20%7D%7B2n%7D%7D%20%5B%5Ccos%20%5B%5Cfrac%7B%5Cpi%20%7D%7Bn%7D(n%2B1)-%5Cfrac%7B%5Cpi%20%7D%7B2n%7D%5D-%5Ccos%20(%5Cfrac%7B%5Cpi%20%7D%7Bn%7D-%5Cfrac%7B%5Cpi%20%7D%7B2n%7D)%5D

%7B%5Clarge%20%3D%5Cfrac%7B1%7D%7B%5Ctan%20%5Cfrac%7B%5Cpi%20%7D%7B2n%7D%20%7D%20%7D%20


于是%5Cboxed%7B%7B%5Clarge%20L%3D%5Cfrac%7B4%5Cpi%20r%20%7D%7Bn%5Ctan%20%5Cfrac%7B%5Cpi%20%7D%7B2n%7D%20%7D%20%7D%20%7D

这便是滚过一周总路径长的表达式

验证:以原题为例外接圆半径r%3D%5Csqrt%7B2%7D%20

上式命n=4得:L%3D%5Cfrac%7B4%5Csqrt%7B2%7D%20%5Cpi%20%7D%7B4%5Ctan%20%5Cfrac%7B%5Cpi%20%7D%7B8%7D%20%7D%20%3D(2%2B%5Csqrt%7B2%7D%20)%5Cpi%20

ps:%5Ctan%20%5Cfrac%7B%5Cpi%20%7D%7B8%7D%20%3D%5Csqrt%7B2%7D%20-1,可以用正切半角公式求,也可以用如下的几何法:

延长等腰直角三角形一边,延长长度等于斜边长,然后等边对等角得到22.5°,再用大的直角三角形可得其正切值

当n无限大时,正n边形会趋近于圆,因此考虑取极限

%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B4%5Cpi%20r%20%7D%7Bn%5Ctan%20%5Cfrac%7B%5Cpi%20%7D%7B2n%7D%20%7D%3D8r%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B%7B%5Ccolor%7BRed%7D%20%7B%5Cfrac%7B%5Cpi%20%7D%7B2n%7D%20%7D%7D%20%20%7D%7B%5Ctan%20%5Ccolor%7BRed%7D%20%7B%5Cfrac%7B%5Cpi%20%7D%7B2n%7D%7D%7D

换元,令t%3D%5Cfrac%7B%5Cpi%20%7D%7B2n%7D%20,%5Ctext%7B%E4%B8%8A%E5%BC%8F%7D%3D8r%5Clim_%7Bt%20%5Cto%200%7D%20%5Cfrac%7Bt%7D%7B%5Ctan%20t%7D

最后这个极限可以用洛必达or泰勒展开求之,但有没有门槛低些的求法呢?有!

其中%5Cfrac%7B%5Ctan%20t%7D%7Bt%7D%20可视为正切函数%5Ctan%20x上一点(t%2C%5Ctan%20t)与原点连线(割线)的斜率

t%5Cto%200时,斜率就趋近于在(0,0)处的切线斜率,据导数定义,有

%5Clim_%7Bt%20%5Cto%200%7D%20%5Cfrac%7B%5Ctan%20t-%5Ctan%200%7D%7Bt-0%7D%3D(%5Ctan%20x)'%7C%20_%7Bx%3D0%7D%3D%5Cfrac%7B1%7D%7B%5Ccos%5E2x%7D%20%7C%20_%7Bx%3D0%7D%3D1

取倒数得:%5Clim_%7Bt%20%5Cto%200%7D%20%5Cfrac%7Bt%7D%7B%5Ctan%20%20t%7D%3D1


于是%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20L%3D8r

这与用积分算出的结果是一样的!

ps:用定义推导摆线方程以及用积分计算的方法参考专栏:美丽的摆线及其数学原理

以下是用desmos模拟的轨迹图:

红线为摆线的确切轨迹,蓝线为多边形滚动一周的轨迹

n=6
n=10
n=50

由此可见n%5Cto%20%5Cinfty%20时蓝色轨迹就拟合于摆线!

ps:上述过程不知有无循环论证的嫌疑,若有大佬发现烦请指正。有一点值得肯定,即数学知识间的联系是如此地美妙!数学——人类智慧的结晶!

用多边形滚动逼近计算摆线长(绕远路系列)的评论 (共 条)

分享到微博请遵守国家法律