重磅!量子领域新进展,一周内齐登自然与科学!

6月15日,中国科学技术大学潘建伟研究团队在国际著名学术期刊《自然》杂志上在线发表了题为“基于纠缠的千公里级安全量子加密(Entanglement-based secure quantum cryptography over 1,120 kilometres)”的研究论文 [Nature];6月19日,潘建伟研究团队在光晶格中实现大规模高保真度原子纠缠对的同步制备,在国际著名学术期刊《科学》杂志以“First Release”形式在线发布了该研究成果。

“墨子号”实现基于纠缠的
无中继千公里量子保密通信
中国科学技术大学潘建伟及其同事彭承志、印娟等组成的研究团队,联合牛津大学Artur Ekert、中科院上海技术物理研究所王建宇团队、微小卫星创新研究院、光电技术研究所等相关团队,利用“墨子号”量子科学实验卫星在国际上首次实现千公里级基于纠缠的量子密钥分发。
该实验成果不仅将以往地面无中继量子保密通信的空间距离提高了一个数量级,并且通过物理原理确保了即使在卫星被他方控制的极端情况下依然能实现安全的量子通信,取得了量子通信现实应用的重要突破。
6月15日,研究团队在国际著名学术期刊《自然》杂志上在线发表了题为“基于纠缠的千公里级安全量子加密(Entanglement-based secure quantum cryptography over 1,120 kilometres)”的研究论文 [Nature]。《自然》杂志为此专门发布了题为“基于卫星的远距离安全通信(Quantum physics: Long-range satellite-based secure communications)”的新闻稿(Press release)加以推介。

量子通信提供了一种原理上无条件安全的通信方式,但要从实验室走向广泛应用,需要解决两大挑战,分别是现实条件下的安全性问题和远距离传输问题。通过国际学术界30余年的努力,目前现场点对点光纤量子密钥分发的安全距离达到了百公里量级。在现有技术水平下,使用可信中继可以有效拓展量子通信的距离,比如世界首条量子保密通信京沪干线通过32个中继节点,贯通了全长2000公里的城际光纤量子网络;而利用量子科学实验卫星“墨子号”作为中继,在自由空间信道进一步拓展到了7600公里的洲际距离。然而,尽管可信中继将传统通信方式中整条线路的安全风险限制在有限个中继节点范围,中继节点的安全仍然需要得到人为保障。例如,在星地量子密钥分发过程中,量子卫星作为可信中继,掌握着用户分发的全部密钥,如果卫星被他方控制,就存在信息泄漏的风险。
实现远距离安全量子通信的最佳解决方案是结合量子中继和基于纠缠的量子密钥分发。基于纠缠的量子密钥分发的原理是,无论处于纠缠状态的粒子之间相隔多远,只要测量了其中一个粒子的状态,另一个粒子的状态也会相应确定,这一特性可以用来在遥远两地的用户间产生密钥。由于对粒子的测量局域地发生在用户端,纠缠源不掌握密钥的任何信息,即使纠缠源(例如卫星)由不可信的他方提供,只要用户间检测到量子纠缠,就可以产生安全的密钥。因此,量子通信源端不完美带来的安全问题可以得到完全解决,进一步提高了量子通信的现实安全性。原理上,利用量子中继可以实现远距离的量子纠缠分发,但实用化的量子中继还需要较长时间。
利用卫星作为量子纠缠源,通过自由空间信道在遥远两地直接分发纠缠,为现有技术条件下实现基于纠缠的量子保密通信提供了可行的道路。特别是“墨子号”量子科学实验卫星在2017年首次实现千公里量级的自由空间量子纠缠分发后,实现基于纠缠的远距离量子密钥分发就成为国际学术界热切期盼的目标。
基于“墨子号”量子卫星的前期实验工作和技术积累,研究团队通过对地面望远镜主光学和后光路进行升级,实现了单边双倍、双边四倍接收效率的提升。

“墨子号”量子卫星过境时,同时与新疆乌鲁木齐南山站和青海德令哈站两个地面站建立光链路,以每秒2对的速度在地面超过1120公里的两个站之间建立量子纠缠,进而在有限码长下以每秒0.12比特的最终码速率产生密钥。在实验中,通过对地面接收光路和单光子探测器等方面进行精心设计和防护,保证了公平采样和对所有已知侧信道的免疫,所生成的密钥不依赖可信中继、并确保了现实安全性。结合最新发展的量子纠缠源技术,未来卫星上可每秒产生10亿对纠缠光子,最终密钥成码率将提高到每秒几十比特或单次过境几万比特。

《自然》杂志审稿人称赞该工作“展示了一项开创性实验的结果(present the results of a groundbreaking experiment);” “这是朝向构建全球化量子密钥分发网络甚至量子互联网的重要一步(This is a significant step toward establishing a global network for QKD, and more generally, a quantum Internet for quantum communication);”“我的确认为不依赖可信中继的长距离纠缠量子密钥分发协议的实验实现是一个里程碑(I do agree that the actual implementation of a long-distance entanglement-based QKD protocol not relying on trusted nodes is a milestone)。”该研究成果是现实条件下实现安全、远距离量子保密通信的重要突破,如同沃尔夫物理学奖获得者、量子密码的提出者之一Gilles Brassard所指出的,“这将最终实现所有密码学者千年来的梦想(This would achieve the holy Grail that all cryptographers have been dreaming of for thousands of years)。”
基于该研究成果发展起来的高效星地链路收集技术,可以将量子卫星载荷重量由现有的几百公斤降低到几十公斤以下,同时将地面接收系统的重量由现有的10余吨大幅降低到100公斤左右,实现接收系统的小型化、可搬运,为将来卫星量子通信的规模化、商业化应用奠定了坚实的基础。
“墨子号”量子科学实验卫星是中科院空间科学战略性先导科技专项之一。迄今,“墨子号”研究团队已在《自然》及《科学》杂志发表了5篇研究论文,为我国在未来继续引领世界量子通信技术发展和空间尺度量子物理基本问题检验前沿研究奠定了坚实的科学与技术基础。
该研究工作得到了中科院、国家自然科学基金委、科技部、安徽省、上海市等的支持。
论文链接:
https://www.nature.com/articles/s41586-020-2401-y

中国科大在光晶格中
实现大规模高保真度原子纠缠对的同步制备
中国科学技术大学潘建伟、苑震生等在超冷原子量子计算和模拟研究中取得重要进展。他们在理论上提出并实验实现原子深度冷却新机制的基础上,在光晶格中首次实现了1250对原子高保真度纠缠态的同步制备,为基于超冷原子光晶格的规模化量子计算与模拟奠定了基础。北京时间6月19日,国际著名学术期刊《科学》杂志以“First Release”形式在线发布了该研究成果。
基于量子力学的基本原理,量子计算和模拟被认为是后摩尔时代推动高速信息处理的颠覆性技术,有望解决诸如高温超导机制模拟、密码破解等重大科学和技术问题。量、子纠缠是量子计算的核心资源,量子计算的能力将随纠缠比特数目的增长呈指数增长。因而,大规模纠缠态的制备、测量和相干操控是该研究领域的核心问题。实现大规模纠缠态的通常途径是,先同步制备大量纠缠粒子对,然后通过量子逻辑门操作将其连接形成多粒子纠缠。因此,高品质纠缠粒子对的同步制备是实现大规模纠缠态的首要条件。十几年来,已有很多实验在光子、囚禁离子、中性原子等系统中演示了操控多个量子比特进行信息处理的可行性。但是,以往的工作中,受限于纠缠对的品质和量子逻辑门的操控精度,目前人们所能制备的最大纠缠态距离实用化的量子计算和模拟所需的纠缠比特数和保真度还有很大差距。
在实现量子比特的众多物理体系中,光晶格超冷原子比特和超导比特具备良好的可升扩展性和高精度的量子操控性,是最有可能率先实现规模化量子纠缠的系统。自2010年开始,中国科大研究团队与德国海德堡大学合作,对基于超冷原子光晶格的可拓展量子信息处理展开联合攻关。在前期的研究中,该团队使用Rb-87超冷原子制备了600多对保真度为79%的超冷原子纠缠态[Nature Physics 12, 783 (2016)];并使用该体系调控特殊的环交换相互作用产生四体纠缠态,模拟了拓扑量子计算中的任意子激发模型[Nature Physics 13, 1195 (2017)]。以上的实验中,由于晶格中原子的温度偏高(约10 nK),使得晶格中原子填充缺陷大于10%,这对于纠缠原子对连接形成更大的多原子纠缠态和提升纠缠保真度有很大的影响。
在这项研究中,该团队首次提出了使用交错式晶格结构将处在绝缘态的冷原子浸泡到超流态中的新制冷机制,通过绝缘态和超流态之间高效率的原子和熵的交换,使系统中的热量主要以超流态低能激发的形式存储,再用精确的调控手段将超流态移除,从而获得低熵的完美填充晶格。该实验实现了这一制冷过程,制冷后使系统的熵降低了65倍,达到了创纪录的低熵,使得晶格中原子填充率大幅提高到99.9%以上。在此基础上,该团队开发了两原子比特高速纠缠门,获得了纠缠保真度为99.3%的1250对纠缠原子。

将处在绝缘态的样品原子(蓝绿色球)交错浸泡到处在超流态的环境原子(红色球)中,这两种状态之间高效率的原子和熵的交换,导致有能隙的绝缘态不易被激发,系统中的热量主要以超流态低能激发的形式存储。
《科学》杂志的审稿人对该工作给与高度评价:“他们在原子比特中实现了我所知的最低的熵,并且是在如此大的(1万个原子)系统中;进一步,他们报导了我所知的中性原子中的最高保真度两比特量子门(They show the lowest entropy/particle that I am aware of for an atomic register, no less one of this size (10^4); further, they report the highest fidelity two-qubit gate that I am aware of for neutral atoms 0.993(1));” “开发新的晶格量子气体制冷技术,是该学界为了研究新物态和满足量子信息处理需求的重要目标。有鉴于此,我认为他们实现如此大的熵减是一个突破……(Developing new cooling techniques for quantum gases in optical lattices is an important goal for the community to access novel states of matter and for quantum information applications. In that sense, I consider the impressive entropy reduction factor demonstrated here a breakthrough)。”
在该研究工作的基础上,研究团队将通过连接多对纠缠原子的方法,制备几十到上百个原子比特的纠缠态,用以开展单向量子计算和复杂强关联多体系统量子模拟研究。同时,该工作中的新制冷技术将有助于对超冷费米子系统的深度冷却,使得系统达到模拟高温超导物理机制的苛刻温区。该研究成果将极大推动量子计算和模拟领域的发展。
该研究工作得到了科技部、国家自然科学基金委、中科院、教育部和安徽省等的支持。
论文链接:
https://science.sciencemag.org/content/early/2020/06/17/science.aaz6801
