欢迎光临散文网 会员登陆 & 注册

复旦大学谢启鸿高等代数每周一题[2021A05]参考解答

2021-10-31 17:58 作者:CharlesMa0606  | 我要投稿

本文是本人给出的2021年复旦大学谢启鸿高等代数的每周一题[问题2021A05]的解答

题目来自于复旦大学谢启鸿教授在他的博客提供的每周一题练习

(链接:https://www.cnblogs.com/torsor/p/15329047.html)

本文仅供学习交流,如有错误恳请指正!

[问题2021A05]A%2CBn阶方阵,满足:

AB%3DA%2Ba_mB%5Em%2Ba_%7Bm-1%7DB%5E%7Bm-1%7D%2B%5Ccdots%2Ba_1B

其中a_m%2Ba_%7Bm-1%7D%2B%5Ccdots%2Ba_1%5Cneq0.求证: AB%3DBA.

(方法一,变形配凑)

移项可得A%3DAB-%5Cleft(a_mB%5Em%2Ba_%7Bm-1%7DB%5E%7Bm-1%7D%2B%5Ccdots%2Ba_1B%5Cright)两边左乘B,有

%5Cleft(AB-BA%5Cright)%5Cleft(B-I_n%5Cright)%3DO

%5Cleft(AB-BA%5Cright)%5Cleft(B-I_n%5Cright)%3DO

注意到我们令B%3DB-I_n%2BI_n代入题中式子可得

f%5Cleft(A%5Cright)%5Cleft(B-I_n%5Cright)%3D%5Cleft(a_m%2Ba_%7Bm-1%7D%2B%5Ccdots%2Ba_1%5Cright)I_n%5Cneq0

从而B-I_n可逆,于是AB%3DBA.

%5BQ.E.D%5D

(方法二,类似方法一,但直接代入B%3DB-I_n%2BI_n)

A%5Cleft(B-I_n%2BI_n%5Cright)%3DA%2Ba_m%5Cleft(B-I_n%2BI_n%5Cright)%5Em%2Ba_%7Bm-1%7D%5Cleft(B-I_n%2BI_n%5Cright)%5E%7Bm-1%7D%2B%5Ccdots%2Ba_1%5Cleft(B-I_n%2BI_n%5Cright)

二项式展开后移项,有

%5Cleft(A-f%5Cleft(B%5Cright)%5Cright)%5Cleft(B-I_n%5Cright)%3D%5Cleft(a_m%2B%5Ccdots%2Ba_1%5Cright)I_n%2C(a_m%2Ba_%7Bm-1%7D%2B%5Ccdots%2Ba_1%5Cneq0)

其中f%5Cleft(B%5Cright)形式上是只有BI_n的矩阵多项式,从而与B-I_n可交换,而B-I_nA-f%5Cleft(B%5Cright)也可交换

从而

%5Cleft(A-f%5Cleft(B%5Cright)%5Cright)%5Cleft(B-I_n%5Cright)%3D%5Cleft(B-I_n%5Cright)%5Cleft(A-f%5Cleft(B%5Cright)%5Cright)%5CRightarrow%20AB%3DBA.

%5BQ.E.D%5D

(方法三,利用多项式理论)

设多项式f%5Cleft(x%5Cright)%3Da_mx%5Em%2Ba_%7Bm-1%7Dx%5E%7Bm-1%7D%2B%5Ccdots%2Ba_1x%2Cg%5Cleft(x%5Cright)%3Dx-1,因为a_m%2Ba_%7Bm-1%7D%2B%5Ccdots%2Ba_1%5Cneq0,从而f%5Cleft(1%5Cright)%5Cneq0,于是%5Cleft(f%5Cleft(x%5Cright)%2Cg%5Cleft(x%5Cright)%5Cright)%3D1.

那么%5Cexists%20u%5Cleft(x%5Cright)%2Cv%5Cleft(x%5Cright)%2Cs.t.f%5Cleft(x%5Cright)u%5Cleft(x%5Cright)%2Bg%5Cleft(x%5Cright)v%5Cleft(x%5Cright)%3D1

我们代入矩阵B,可以得到:f%5Cleft(B%5Cright)u%5Cleft(B%5Cright)%2Bg%5Cleft(B%5Cright)v%5Cleft(B%5Cright)%3DI_n

由题,Ag%5Cleft(B%5Cright)%3Df%5Cleft(B%5Cright),从而Ag%5Cleft(B%5Cright)u%5Cleft(B%5Cright)%2Bg%5Cleft(B%5Cright)v%5Cleft(B%5Cright)%3DI_n,有:

g%5Cleft(B%5Cright)%5Cleft(Au%5Cleft(B%5Cright)%2Bv%5Cleft(B%5Cright)%5Cright)%3DI_n

从而g%5Cleft(B%5Cright)可逆,A%3Df%5Cleft(B%5Cright)g%5E%7B-1%7D%5Cleft(B%5Cright),由f%5Cleft(B%5Cright)%2Cg%5Cleft(B%5Cright)可交换,可得

f%5Cleft(B%5Cright)g%5Cleft(B%5Cright)%3Dg%5Cleft(B%5Cright)f%5Cleft(B%5Cright)

从而

A%5Cleft(B-I_n%5Cright)%3DAg%5Cleft(B%5Cright)%3Df%5Cleft(B%5Cright)%3Dg%5Cleft(B%5Cright)f%5Cleft(B%5Cright)g%5E%7B-1%7D%5Cleft(B%5Cright)%3Dg%5Cleft(B%5Cright)A%3D%5Cleft(B-I_n%5Cright)A

于是AB%3DBA.

%5BQ.E.D%5D

(1)方法一和方法二利用矩阵的操作,使用凑因子法“具体地”给出了B-I_%7Bn%7D的逆阵(实际上文中并没有详细写出),从而证明AB%3DBA,而方法三利用多项式理论证明了它的逆阵的存在性,没有繁杂的计算,显示出了多项式理论在解决某些问题时的强大

(2)本文可能与up主@SCHEME_maths 给出的解答类似,事实上本文的解法的思考以及撰写是独立完成的,但复旦大学高等代数每周一题2021A05思路分析与三种证法 - 哔哩哔哩 (bilibili.com)一文给出了解决这个问题的清晰思路,值得读者参考.

(3)文末附上图片格式的解法,有需要的读者可以自行取用,仅供学习交流

问题2021A05


复旦大学谢启鸿高等代数每周一题[2021A05]参考解答的评论 (共 条)

分享到微博请遵守国家法律