如何进行数学概念课的教学
如何进行数学概念课的教学?概念是数学的基本元素,掌握好概念是学生学好数学的前提。教师要重视概念教学,充分发挥概念教学的教育价值。今天,小编给大家带来数学有效的教学方法。
1 揭示概念本质。课改对于概念教学的要求是淡化概念表述的“形式”,而注重其“实质”。具体地说,教学时对一些概念的定义形式不必花大力气,对一些文字叙述较繁的概念不必要求学生背诵,对涉及的一些较深的理论不必去深究,但对概念的实质要理解,要引导学生通过分析、比较、综合、抽象、概括等逻辑思维方法,把握事物的本质和规律,从而掌握概念。例如分式概念的教学,通过实例引导学生分析、综合,找出分式的特点:一是具有形式“A/B”;二是形式中的A、B表示整式;三是形式中的B必须含有字母;这三个条件缺一不可。这样一来,概念的特征一目了然,学生易于接受,便于掌握。
为让学生充分理解概念,在呈现概念的定义之后,还需要向学生呈现概念的正反例证。呈现的例证要在本质属性上有变化,以利于学生正确地理解概念。如呈现了方程的定义后,接着给学生呈现一些有变化的例证:x=5,a+5=c。另外,还要呈现一些反例来从反面说明,如3+2=5,y>7等。
2 加强概念类比。“有比较才有鉴别”。数学的一些概念和规律,理论性较强,而且比较抽象,如果将它与学生熟悉的(已知的)相关实体(事物)进行比较,就能帮助学生理解概念、掌握规律。例如,在教分式这个概念的时候,教师可以将其与学生已经学过的分数进行类比。由分数的分子分母是整数,类比得出分式的分子分母应该是整式。这样做,将新的内容放到学生熟悉的环境中,既提高了学生的兴趣,又降低了学生学习的难度。
3 重视运用变式。所谓变式,就是变换提供给学生的各种感性材料的表现形式,使其非本质属性时有时无,而本质属性保持恒在。如“方程”的变式中,“含有未知数的等式”这一本质不变,但未知数的个数、位置、表示的方式等有变化。教师要引导学生通过分析、对比,运用概念的特征对正反例证作出正确分类,把握事物隐藏的本质属性,克服思维定势的负效应。101教育旗下品牌101智慧课堂依托互联网和信息技术,基于101智慧课堂,以智慧教学为核心,为学校提供信息化教学整体应用解决方案。